
- •3. Умножение матриц. Свойства.
- •4. Транспонирование матриц. Свойства.
- •5. Перестановки.
- •6. Понятие определителя.
- •7. Частные случаи определителей.
- •8. Свойства определителя.
- •9. Миноры и алгебраические дополнения.
- •10. Теоремы о разложениях определителя
- •11. Обратная матрица
- •1. Матрицы. Основные определения.
- •2. Линейные операции над матрицами и их свойства.
- •21. Понятие базиса. Координаты.
- •22. Декартова прямоугольная система координат.
- •24. Выражение для скалярного произведения в декартовых координатах.
- •23. Скалярное произведение двух векторов. Его физический смысл. Геометрические и алгебраические свойства.
- •26. Выражение для векторного произведения в декартовых координатах.
- •25. Векторное произведение. Его свойства.
- •29. Уравнение плоскости и прямой на плоскости в отрезках.
- •27. Смешанное произведение трёх векторов. Его свойства и выражение в декартовых координатах.
- •36. Гипербола и ее св-ва.
- •37. Понятие о поверхностях 2го порядка.
- •28. Общее уравнение плоскости и прямой на плоскости.
- •40. Функции и её предел.
- •35. Эллипс.
- •34.Парабола. Определение. Вывод канонического уравнения.
- •30. Нормальное ур-е пл-ти и прямой на пл-ти
- •31.Уравнения прямой, проходящей через заданную точку параллельно заданному вектору.
- •32. Канонические уравнения прямой.
- •33. Уравнение прямой на плоскости с угловым коэффициентом.
- •42.Основные теоремы о пределах
- •43.Первый замечательный предел
- •44.Второй замечательный предел
- •45.Непрерывность ф-циив точке
- •48. Некоторые свойсва непрерывной ф-ции
- •46. Классификация точек разрыва
- •50. Производная. Определение и физ. Смысл.
- •49, Сравнение бесконечно малых
- •51. Геометрический смысл производной
- •54. Обратная функция и её диффренциирование
- •55.Обратные тригонометрические функции и их производные
- •12. Ранг матрицы.
- •53. Производная сложной функции:
- •56.Производные от функций и
- •57. Гиперболические функции
- •13. Линейные системы уравнений. Основные определения. Матричная запись.
- •14. Формула Крамера
- •15. Метод Гаусса
- •16. Решение произвольных систем уравнений
- •17. Однородные системы уравнений.
- •19. Линейные операции над векторами
- •20. Линейнонезависимые системы векторов.
- •38. Действительные числа, переменные велечины
- •39. Предел переменной величины.
- •41. Бесконечно малые и бесконечно большие.Теоремы.
- •47. Непрерывность функции вна интервали и на отрезке
- •58. Таблица производных
- •52. Основные правила дифференцирования.
36. Гипербола и ее св-ва.
Кривая 2го порядка наз. гиперболой, если в ур-ии Ax2+Cy2=d, коэффициент А и С имеют противоположные знаки, т.е. А*С<0
б) Если d>0, то каноническое ур-е гиперболы примет вид: x2/a2-y2/b2=1, F1(c,o) и F2(-c,0) - фокусы ее, e>0, e=c/a - эксцентриситет.
Св-во:
для любой точки гиперболы абсолютная величина разности ее расстояний до фокусов есть величина постоянная = 2а.
б) если d=0, ур-е примет вид x2/a2-y2/b2=0, получаем 2 перекрестные прямые х/а±у/b=0
в) если d<0, то x2/a2-y2/b2=-1 - ур-е сопряженной гиперболы.
37. Понятие о поверхностях 2го порядка.
Алгебраическим ур-ем 2ой степени наз. ур-е вида Ax2+Bxy+Cy2+Dx+ey+F=0, где A,B,C,D,e,F - действительные числа
Линии, которые в системе декартовых координат определяются алгебраическим ур-ем 2ой степени наз. линиями 2го порядка.
28. Общее уравнение плоскости и прямой на плоскости.
Положение плоскости в пространстве полностью определяется некоторой точкой, принадлежащей плоскости, и направлением вектора, перпендикулярного плоскости.
М0
– зафиксированная точка плоскости,
-
вектор, -ный
плоскости.
Пусть
М – произвольная точка плоскости, тогда
вектор
,
т. е. скалярное произведение (
,
)=0
Проведём
в М0
и
М из начала координат
,
тогда
=
.
(1)
Уравнение
плоскости, заданное принадлежащей ей
точкой, определяемой радиус-вектором
и
вектором
,
-ным
плоскости.
-
радиус-вектор, проведённый в произвольную
точку плоскости – уравнение в векторной
форме.
Пусть
М0(x0,y0,z0),
M(x,y,z),
тогда вектор
,
.
=
r-r0={x-x0,y-y0,z-z0}
Пусть
вектор
,
тогда уравненіе (1) можно переписать
так:
A(x-x0)+B(y-y0)+C(z-z0)=0. (2)
Это уравнение плоскости, проходящей через точку (x0,y0,z0) -но вектору {A,B,C} в координатной плоскости. Аналогично можно получить уравнение прямой на плоскости, заданной точкой М0(x0,y0) и вектором N{A,B}.
Рассуждая аналогично, можно сказать, что радиус-вектор, проведённый из начала координат в произвольную точку прямой будет удовлетворять уравнению прямой на плоскости в векторной форме.
Рассуждая аналогично, можно получить: A(x-x0)+B(y-y0)=0.(4)
Преобразуем уравнение (2)
Ax+By+Cz-(Ax0+By0+Cz0)=0
Ax+By+Cz+D=0 (5)
D= -(Ax0+By0+Cz0)
Уравнение D – это общее уравнение.
Можно показать, что уравнение любой плоскости в пространстве может быть представлено в виде (5).
Любое уравнение вида (5) – линейное относительно координат x y z, определяет некоторую плоскость в пространстве; преобразуя аналогично уравнение (4) получим Ах+Ву+С=0. (6)
С= -(Ax0+By0)
Уравнение (6) – общее уравнение прямой на плоскости.
Можно показать, что уравнение любой прямой может быть представлено в виде (6) и что любое уравнение вида (6) линейное относительно координат х у и определяет некоторую прямую на плоскости.
40. Функции и её предел.
Функция - это зависимость одной величины от другой.
Если существует взаимооднозначное соответствие между переменной х одного множества и переменной у другого множества, то она называется функциональной зависимостью. y=f(x).
Предел ф-ции:
y=f(x) число а называется пределом переменной х, если разность м/ду ними есть б.м.в. |x-a|®0, |x-a|<e
Число А называется пределом ф-ции f(x) при х®а, если для каждого, как угодно малого на период заданного числа e. -e>0, найдется такое как угодно малое на период заданного d>0, что будут выполняться неравенства: Если |x-a|<d, то |f(x)-A|<e
Основные св-ва:
1.Если величина имеет предел, то только 1.
2. limC=C, где С- постоянная величина
3. Если a-б.м.в., то lima=0
4. предела б.б.в. не существует
5. если limy=a, то y=a+a, где a-б.м.в.