Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_po_fizike_shpora.doc
Скачиваний:
2
Добавлен:
15.04.2019
Размер:
431.62 Кб
Скачать

Энтропия и критика эволюционизма

Второе начало термодинамики (в формулировке неубывания энтропии) иногда используется критиками эволюционной теории с целью показать, что развитие природы в сторону усложнения невозможно.. Однако подобное применение физического закона является некорректным, так как энтропия не убывает только в замкнутых системах (сравн. с диссипативной системой), в то время как живые организмы и планета Земля в целом являются открытыми системами.

В состоянии равновесия энтропия замкнутой системы достигает максимума и никакие макроскопические процессы в такой системе, согласно Второму началу ТД, невозможны. Для незамкнутой системы направление возможных процессов, а также условия равновесия могут быть получены из закона возрастания энтропии, примененного к составной замкнутой системе, получаемой путём присоединения всех тел, участвующих в процессе.

Первое начало: количество теплоты, полученное системой, идёт на изменение её внутренней энергией и совершение работы против внешних сил.

Второе начало: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы возрастает.

  1. Адиабатический процесс.

Адиабатический процесс - это такое изменение состояний газа, при котором он не отдает и не поглощает извне теплоты. Следовательно, адиабатический процесс характеризуется отсутствием теплообмена газа с окружающей средой. Адиабатическими можно считать быстро протекающие процессы. Так как передачи теплоты при адиабатическом процессе не происходит, то   и уравнение I начала термодинамики принимает вид

(9.20)

или

т.е. внешняя работа газа может производиться вследствие изменения его внутренней энергии. Адиабатное расширение газа (dV>0) сопровождается положительной внешней работой, но при этом внутренняя энергия уменьшается и газ охлаждается (dT<0).

Адиабатические процессы обратимы, если их проводить достаточно медленно. В общем случае адиабатический процесс необратим.

Линия, изображающая адиабатный процесс на какой-либо термодинамической диаграмме, называется адиабатой.

При адиабатическом процессе показатель адиабаты равен ; где R - универсальная газовая постоянная.

Теплоемкость вещества при адиабатном процессе равна нулю.

  1. Состояние свободы молекулы.

Одной из основных характеристик термодинамической системы является ее внутренняя энергия U — энергия хаотического (теплового) движения микрочастиц системы (атомов, молекул, ядер, электронов и т. д.) и энергия взаимодействия этих частиц. Из этого определения следует, что к внутренней энергии не относятся кинетическая энергия движения системы как целого и потенциальная энергия системы во внешних полях. 

Внутренняя энергия — определенная функция термодинамического состояния системы, т. е. в любом состоянии система обладает вполне определенной внутренней энергией (она не зависит от того, каким образом система пришла в данное состояние). Это значит, что при переходе системы из одного состояния в другое изменение внутренней энергии задается только разностью значений внутренней энергии данных состояний и не зависит от пути и способа перехода. 

В механике вводилось понятие числа степеней свободы: это число независимых переменных (координат), которые полностью определяют положение системы в пространстве. В некоторых задачах молекулу одноатомного газа (рис. 1, а) рассматривают как материальную точку, которой задают три степени свободы поступательного движения. При этом не учитывается энергия вращательного движения. 

При любом числе степеней свободы данной молекулы три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, значит на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <ε0> (энергия поступательного движения молекул):  .

В статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул: для статистической системы, которая находится в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы — в среднем энергия, равная kT.

  1. Теплоемкость идеального газа.

Теплоемкость идеального газа – это отношение тепла, сообщенного газу, к изменению температуры δТ, которое при этом произошло.

.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]