- •Основные понятия и определения
- •1.1 Плотность
- •1.2. Вязкость
- •1.3 Модели жидкой среды
- •1.4 Ньютоновские и Аномальные жидкости
- •1.5Силы действующие в жидкости
- •1.5.1 Массовые силы
- •1.5.2 Поверхностные силы
- •1.5.3 Тензор напряжения
- •1.5.4 Касательные напряжения
- •1.6 Обобщенная Гипотеза Ньютона
- •2. Гидростатика
- •2.1 Равновесное состояние
- •2.2 Гидростатическое давление в точке
- •2.3 Общие Дифференциальные уравнения равновесия жидкости
- •2.4 Основное уравнение гидростатики в дифференциальной форме
- •2.5 Основное уравнение гидростатики в интегральной форме для несжимаемой жидкости
- •2.6 Гидростатический напор
- •2.7 Определение силы давления жидкости на поверхности тел
- •2.8 Плоская поверхность
- •2.9 Давление Жидкости на горизонтальное дно сосуда
- •2.10 Равновесие несмешивающихся жидкостей
- •2.11 Относительное равновесие
- •2.12 Равновесие Газов
- •2.13 Международная стандартная атмосфера
- •3 Основные уравнения Гидро Газодинамики
- •3.1Основные понятия и определения движения жидкости
- •3.2 Уравнение Бернулли для элементарной струйки несжимаемой жидкости
- •3.3 Два метода исследования движения жидкости Лагранжа и Эйлера
- •3.4 Уравнение линии тока
- •3.5 Уравнение неразрывности
- •3.6 Вихревое и безвихревое движение жидкости
- •3.7 Интегрирование уравнений Эйлера для потенциального потока в случае установившегося движения
- •3.8 Уравнения Навье Стокса
- •4 Режимы течения.
- •4.1 Режимы течения
- •4.2 Число Рейнольдса
- •4.3 Виды гидравлических сопротивлений
- •4.2 Общая формула для потерь напора на трение при равномерном движении жидкости в трубах
- •4.4 Особенности ламинарного и турбулентного движения жидкости в трубах
- •4.5 Ламинарное равномерное движение жидкости
- •4.6.Турбулентное равномерное движение жидкости в трубах
- •4.7 Касательное напряжение при турбулентном движении
- •4.8 Полуэмпирические теории турбулентности
- •4.9 Начальный участок турбулентного движения
- •5. Потери в потоке
- •5.1 Потери напора на трение в круглой трубе
- •5.2 Опытные данные о распределении скоростей и потерях напора
- •5.3 Эмпирические формулы для коэффициента гидравлического трения
- •5.4 Движение жидкости в трубах некругового сечения
- •5.5 Снижение потерь напора на трение при турбулентном движении
- •5.6 Местные гидравлические сопротивления
- •5.6.1 Внезапное расширение трубопровода
- •5.6.2 Внезапное сужение трубопровода
- •5.6.3.Вход в трубу через диафрагму
- •5.6.4.Резкое уменьшение диаметра трубы
- •5.6.5 Постепенное расширение
- •5.6.6 Постепенное сужение трубы
- •6.1 Циркуляция скорости
- •6.2 Степенные законы распределения скоростей
- •6.3 Модели турбулентности
- •7. Основы теории пограничного слоя
- •7.1 Понятие о пограничном слое
- •7.2 Ламинарный погранслой
- •7.3 Турбулентный погранслой
- •7.4 Отрыв пограничного слоя, и отрыв потока
- •7.4 Методы управления пограничным слоем
- •7.4.1 Предотвращение отрыва слоя при помощи сосредоточенного отсоса из него жидкости или ввода в слой жидкости.
- •7.4.2 Затягивание ламинарного участка слоя путем придания носовой части тела оптимальной формы
- •7.4.3 Ламинаризация пограничного слоя при непрерывном (распределенном) отборе потока
- •7.4.4 Ламинаризация пограничного слоя при щелевом отборе
- •8 Газодинамические процессы {Модуль 3}
- •8.1 Уравнения течения жидкости в трубах переменного сечения
- •8.2 Уравнение неразрывности струи
- •8.3 Сопло Лаваля и скорость истечения
- •8.4 Скорость звука
- •8.5 Газодинамические функции
- •8.5.1 Гдф характеризующие термодинамическое состояние.
- •8.5.2 Гдф характеризующие Разгон потока (q, y, ξ)
- •8.5.3 Гдф z, f, r – характеризуют импульс потока.
- •9 Плоский сверхзвуковой поток
- •9.1 Термодинамика ударных волн
- •9.2 Происхождение ударных волн
- •9.3 Ударная волна, вызванная летательным аппаратом
- •9.4 Скачки уплотнения. Образование скачков уплотнения
- •9.4.1. Прямой скачок
- •9.4.2 Косые скачки уплотнения
- •9.5 Формы скачков уплотнения
- •9.6 Критическая скорость
- •9.7 Течение Прандтля Майера
- •9.8 Закон обращения воздействия
- •1) Расходное воздействие на газовый поток.
- •2) Механическое воздействие.
- •3) Тепловое воздействие
- •4) Воздействие трением.
- •9.9 Гидравлический удар
- •9.10 Истечение жидкости и газа через отверстия и насадки.
2.4 Основное уравнение гидростатики в дифференциальной форме
Величина гидростатического давления в данной точке не зависит от ориентации в пространстве площадки, на которой она расположена. (основная теорема Гидростатики).
px=py=pz=pn
Где px, py, pz – гидростатическое давление по направления координатных осей, а pn- по произвольному направлению.
В диф форме:
(2.4)
Это уравнение называют основным уравнением гидростатики в дифференциальной форме.
Гидростатическое давление в точке будучи одинаковым по любому направлению, не одинаково в различных точках пространства то есть является функцией координат.
p=f(x,y,z)
2.5 Основное уравнение гидростатики в интегральной форме для несжимаемой жидкости
Возьмем сосуд с жидкостью представленный на рис 2.5 жидкость находится в покое. Из всех объемных сил на него будут действовать только сила тяжести.
Тогда проекции ускорений на оси ay=Y и ах=X будут равны 0, а az=Z = -g
Атмосферное давление воздействующее на поверхность жидкости = p0
Подставляем эти значения в осн. ур. в диф. Форме
Интегрируем данное выражение
=const
Чтобы определить постоянную интегрирования С рассмотрим сосуд с жидкостью.
Для точки находящейся на поверхности p=p0 и z=z0.
Тогда находим сто постоянная интегрирования равна
Тогда основное уравнение гидростатики запишется в виде.
Или
,
или
Вместо разницы координат z0-z для жидкости удобнее ввести глубину h погружения точки под уровень свободной поверхности. При этом для гидростатического давления в данной точке несжимаемой жидкости будем иметь:
р = pо + γh (2.6)
Это и есть уравнение гидростатики для несжимаемой жидкости, когда из объемных сил на нее действуют только силы тяжести.
Входящее в него давление ро на свободной поверхности называется начальным гидростатическим давлением, а давление
р' = γh = ρgh — избыточным гидростатическим давлением.
Таким образом, полное гидростатическое давление р данной точке несжимаемой жидкости складывается из начального и избыточного гидростатических давлений, т. е.
р = ро + р' (2.7)
Из формулы (2.6) следует, что величина избыточного гидростатического давления в данной капельной жидкости зависит только от глубины погружения точки и прямо пропорциональна ей.
Избыточное давление может быть как положительной, так и отрицательной. Такая трактовка приводит нас к понятию абсолютного давления, которое в соответствии с (2.7) может быть представлено как сумма барометрического (атмосферного) давления и избыточного, т.е.
(2.8)
Отрицательное избыточное давление называют вакуумом.
2.6 Гидростатический напор
(2.9)
В таком виде все его члены выражаются в единицах длины и носят название напоров. Величина z характеризует положение жидкой частицы над произвольно выбираемой горизонтальной плоскостью отсчета, т.е.
z - это геометрический напор;
- пьезометрический напор.
Сумму этих величин
называют гидростатическим напором.
Чтобы уяснить физический смысл этих
величин, рассмотрим простую схему,
показанную на рис. 2.2.
Рис. 2.2
Соотношение (2.9) справедливо для любых произвольно выбранных частиц покоящейся жидкости, поэтому в общем виде его можно записать как
т.е. для любых точек жидкости гидростатический напор одинаков. Следовательно, уровни в пьезометрах установятся на одной и той же высоте (плоскостьC–C на рис. 2.2). Уравнение (2.9) выражает так называемый гидростатический закон распределения давления.
