- •Основные понятия и определения
- •1.1 Плотность
- •1.2. Вязкость
- •1.3 Модели жидкой среды
- •1.4 Ньютоновские и Аномальные жидкости
- •1.5Силы действующие в жидкости
- •1.5.1 Массовые силы
- •1.5.2 Поверхностные силы
- •1.5.3 Тензор напряжения
- •1.5.4 Касательные напряжения
- •1.6 Обобщенная Гипотеза Ньютона
- •2. Гидростатика
- •2.1 Равновесное состояние
- •2.2 Гидростатическое давление в точке
- •2.3 Общие Дифференциальные уравнения равновесия жидкости
- •2.4 Основное уравнение гидростатики в дифференциальной форме
- •2.5 Основное уравнение гидростатики в интегральной форме для несжимаемой жидкости
- •2.6 Гидростатический напор
- •2.7 Определение силы давления жидкости на поверхности тел
- •2.8 Плоская поверхность
- •2.9 Давление Жидкости на горизонтальное дно сосуда
- •2.10 Равновесие несмешивающихся жидкостей
- •2.11 Относительное равновесие
- •2.12 Равновесие Газов
- •2.13 Международная стандартная атмосфера
- •3 Основные уравнения Гидро Газодинамики
- •3.1Основные понятия и определения движения жидкости
- •3.2 Уравнение Бернулли для элементарной струйки несжимаемой жидкости
- •3.3 Два метода исследования движения жидкости Лагранжа и Эйлера
- •3.4 Уравнение линии тока
- •3.5 Уравнение неразрывности
- •3.6 Вихревое и безвихревое движение жидкости
- •3.7 Интегрирование уравнений Эйлера для потенциального потока в случае установившегося движения
- •3.8 Уравнения Навье Стокса
- •4 Режимы течения.
- •4.1 Режимы течения
- •4.2 Число Рейнольдса
- •4.3 Виды гидравлических сопротивлений
- •4.2 Общая формула для потерь напора на трение при равномерном движении жидкости в трубах
- •4.4 Особенности ламинарного и турбулентного движения жидкости в трубах
- •4.5 Ламинарное равномерное движение жидкости
- •4.6.Турбулентное равномерное движение жидкости в трубах
- •4.7 Касательное напряжение при турбулентном движении
- •4.8 Полуэмпирические теории турбулентности
- •4.9 Начальный участок турбулентного движения
- •5. Потери в потоке
- •5.1 Потери напора на трение в круглой трубе
- •5.2 Опытные данные о распределении скоростей и потерях напора
- •5.3 Эмпирические формулы для коэффициента гидравлического трения
- •5.4 Движение жидкости в трубах некругового сечения
- •5.5 Снижение потерь напора на трение при турбулентном движении
- •5.6 Местные гидравлические сопротивления
- •5.6.1 Внезапное расширение трубопровода
- •5.6.2 Внезапное сужение трубопровода
- •5.6.3.Вход в трубу через диафрагму
- •5.6.4.Резкое уменьшение диаметра трубы
- •5.6.5 Постепенное расширение
- •5.6.6 Постепенное сужение трубы
- •6.1 Циркуляция скорости
- •6.2 Степенные законы распределения скоростей
- •6.3 Модели турбулентности
- •7. Основы теории пограничного слоя
- •7.1 Понятие о пограничном слое
- •7.2 Ламинарный погранслой
- •7.3 Турбулентный погранслой
- •7.4 Отрыв пограничного слоя, и отрыв потока
- •7.4 Методы управления пограничным слоем
- •7.4.1 Предотвращение отрыва слоя при помощи сосредоточенного отсоса из него жидкости или ввода в слой жидкости.
- •7.4.2 Затягивание ламинарного участка слоя путем придания носовой части тела оптимальной формы
- •7.4.3 Ламинаризация пограничного слоя при непрерывном (распределенном) отборе потока
- •7.4.4 Ламинаризация пограничного слоя при щелевом отборе
- •8 Газодинамические процессы {Модуль 3}
- •8.1 Уравнения течения жидкости в трубах переменного сечения
- •8.2 Уравнение неразрывности струи
- •8.3 Сопло Лаваля и скорость истечения
- •8.4 Скорость звука
- •8.5 Газодинамические функции
- •8.5.1 Гдф характеризующие термодинамическое состояние.
- •8.5.2 Гдф характеризующие Разгон потока (q, y, ξ)
- •8.5.3 Гдф z, f, r – характеризуют импульс потока.
- •9 Плоский сверхзвуковой поток
- •9.1 Термодинамика ударных волн
- •9.2 Происхождение ударных волн
- •9.3 Ударная волна, вызванная летательным аппаратом
- •9.4 Скачки уплотнения. Образование скачков уплотнения
- •9.4.1. Прямой скачок
- •9.4.2 Косые скачки уплотнения
- •9.5 Формы скачков уплотнения
- •9.6 Критическая скорость
- •9.7 Течение Прандтля Майера
- •9.8 Закон обращения воздействия
- •1) Расходное воздействие на газовый поток.
- •2) Механическое воздействие.
- •3) Тепловое воздействие
- •4) Воздействие трением.
- •9.9 Гидравлический удар
- •9.10 Истечение жидкости и газа через отверстия и насадки.
3) Тепловое воздействие
Тогда формула воздействия
принимает вид:
Схема теплового сопла
Критический подвод тепла dQкр это такое тепло при котором скорость потока становится =
Подвод
тепла по условию
Дозвук ускоряется но остается дозвуковым
Сверхзвук тормозится но остается сверхзвуковым
Подвод
тепла по условию
Дозвук ускоряется до
Сверхзвук тормозится до
Подвод
тепла по условию
Дозвук ускоряется до
Сверхзвук тормозится через прямой скачек до
4) Воздействие трением.
Тогда формула воздействия
принимает вид:
Дозвук ускоряется
Сверхзвук тормозится
Критическая длина трубы
9.9 Гидравлический удар
Явление гидравлического удара открыл в 1897-1899 г. Н. Е. Жуковский. Увеличение давления при гидравлическом ударе определяется в соответствии с его теорией по формуле:
,
где Dp — увеличение давления в Н/м²,
ρ — плотность жидкости в кг/м³,
v0 и v1 — средние скорости в трубопроводе до и после закрытия задвижки (запорного клапана) в м/с,
с — скорость распространения ударной волны вдоль трубопровода.
Жуковский доказал, что скорость распространения ударной волны c находится в прямо пропорциональной зависимости от сжимаемости жидкости, величины деформации стенок трубопровода, определяемой модулем упругости материала E, из которого он выполнен, а также от диаметра трубопровода.
Следовательно, гидравлический удар не может возникнуть в трубопроводе, содержащем газ, так как газ легко сжимаем.
Зависимость между скоростью ударной волны c, её длиной и временем распространения (L и τ соответственно) выражается следующей формулой:
Виды гидравлических ударов
В зависимости от времени распространения ударной волны τ и времени перекрытия задвижки (или другой запорной арматуры) t, в результате которого возник гидроудар, можно выделить 2 вида ударов:
Полный (прямой) гидравлический удар, если t < τ
Неполный (непрямой) гидравлический удар, если t > τ
При полном гидроударе фронт возникшей ударной волны движется в направлении, обратном первоначальному направлению движения жидкости в трубопроводе. Его дальнейшее направление движения зависит от элементов трубопровода, расположенных до закрытой задвижки. Возможно и повторное неоднократное прохождения фронта волны в прямом и обратном направлениях.
При неполном гидроударе фронт ударной волны не только меняет направление своего движения на противоположное, но и частично проходит далее сквозь не до конца закрытую задвижку.
Гидроударом часто называют следствие заполнения надпоршневого пространства в моторе водой, что приводит к внезапной остановке и поломке мотора из-за того, что жидкость практически несжимаема.
Расчет гидравлического удара
Прямой гидравлический удар бывает тогда когда время закрытия задвижки t3 меньше фазы удара T, определяемой по формуле:
Здесь l - длина трубопровода от места удара до сечения, в котором поддерживается постоянное давление, Cu - скорость распространения ударной волны в трубопроводе, определяется по формуле Н.Е. Жуковского, м/с:
где E
- модуль объемной упругости жидкости,
ρ-
плотность жидкости,
- скорость распространения звука в
жидкости, Etr
- модуль упругости материала стенок
трубы, D
- диаметр трубы, h
- толщина стенок трубы.
Для воды отношение
зависит от материала труб и может быть
принято; для стальных - 0.01; чугунных -
0.02; ж/б - 0.1-0.14; асбестоцементных - 0.11;
полиэтиленовых - 1-1.45
Коэффициент k для тонкостенных трубопроводов применяется (стальные, чугунные, а/ц, полиэтиленовые) равным 1.
коэффициент армирования
кольцевой арматурой (f
- площадь сечения кольцевой арматуры
на 1м длины стенки трубы). Обычно a
= 0.015 − 0.05 Повышение давления при прямом
гидравлическом ударе определяется по
формуле:
P = ρCuVo
где Vo - скорость движения воды в трубопроводе до закрытия задвижки.
Если время закрытия задвижки больше фазы удара (t3>Т), такой удар называется непрямым. В этом случае дополнительное давление может быть определено по формуле:
Результат действия удара выражают также величиной повышения напора H, которая равна:
при прямом ударе
при непрямом
Способы предотвращения возникновения гидравлических ударов
Исходя из формулы Жуковского (определяющей увеличение давления при гидроударе), для ослабления силы этого явления или его полного предотвращения можно - уменьшить скорость движения жидкости в трубопроводе, увеличив его диаметр.
- Для ослабления силы этого явления следует увеличивать время закрытия затвора
- Установка демпфирующих устройств.
Примеры
Наиболее простым примером возникновения гидравлического удара является пример трубопровода с постоянным напором и установившимся движением жидкости, в котором была резко перекрыта задвижка или закрыт клапан.
В скважинных системах водоснабжения гидроудар, как правило, возникает, когда ближайший к насосу обратный клапан расположен выше статического уровня воды более, чем на 9 метров, или ближайший к насосу обратный клапан имеет утечку, в то время как расположенный выше следующий обратный клапан держит давление.
В обоих случаях в стояке возникает частичное разрежение. При следующем пуске насоса вода, протекающая с очень большой скоростью, заполняет вакуум и соударяется в трубопроводе с закрытым обратным клапаном и столбом жидкости над ним, вызывая скачок давления и гидравлический удар. Такой гидравлический удар способен вызвать образование трещин в трубах, разрушить трубные соединения и повредить насос и/или электродвигатель.
Гидроудар может возникать в системах объёмного гидропривода, в которых используется золотниковый гидрораспределитель. В момент перекрытия золотником одного из каналов, по которым нагнетается жидкость, этот канал на короткое время оказывается перекрытым, что влечёт за собой возникновение явлений, описанных выше.
