
- •Основные понятия и определения
- •1.1 Плотность
- •1.2. Вязкость
- •1.3 Модели жидкой среды
- •1.4 Ньютоновские и Аномальные жидкости
- •1.5Силы действующие в жидкости
- •1.5.1 Массовые силы
- •1.5.2 Поверхностные силы
- •1.5.3 Тензор напряжения
- •1.5.4 Касательные напряжения
- •1.6 Обобщенная Гипотеза Ньютона
- •2. Гидростатика
- •2.1 Равновесное состояние
- •2.2 Гидростатическое давление в точке
- •2.3 Общие Дифференциальные уравнения равновесия жидкости
- •2.4 Основное уравнение гидростатики в дифференциальной форме
- •2.5 Основное уравнение гидростатики в интегральной форме для несжимаемой жидкости
- •2.6 Гидростатический напор
- •2.7 Определение силы давления жидкости на поверхности тел
- •2.8 Плоская поверхность
- •2.9 Давление Жидкости на горизонтальное дно сосуда
- •2.10 Равновесие несмешивающихся жидкостей
- •2.11 Относительное равновесие
- •2.12 Равновесие Газов
- •2.13 Международная стандартная атмосфера
- •3 Основные уравнения Гидро Газодинамики
- •3.1Основные понятия и определения движения жидкости
- •3.2 Уравнение Бернулли для элементарной струйки несжимаемой жидкости
- •3.3 Два метода исследования движения жидкости Лагранжа и Эйлера
- •3.4 Уравнение линии тока
- •3.5 Уравнение неразрывности
- •3.6 Вихревое и безвихревое движение жидкости
- •3.7 Интегрирование уравнений Эйлера для потенциального потока в случае установившегося движения
- •3.8 Уравнения Навье Стокса
- •4 Режимы течения.
- •4.1 Режимы течения
- •4.2 Число Рейнольдса
- •4.3 Виды гидравлических сопротивлений
- •4.2 Общая формула для потерь напора на трение при равномерном движении жидкости в трубах
- •4.4 Особенности ламинарного и турбулентного движения жидкости в трубах
- •4.5 Ламинарное равномерное движение жидкости
- •4.6.Турбулентное равномерное движение жидкости в трубах
- •4.7 Касательное напряжение при турбулентном движении
- •4.8 Полуэмпирические теории турбулентности
- •4.9 Начальный участок турбулентного движения
- •5. Потери в потоке
- •5.1 Потери напора на трение в круглой трубе
- •5.2 Опытные данные о распределении скоростей и потерях напора
- •5.3 Эмпирические формулы для коэффициента гидравлического трения
- •5.4 Движение жидкости в трубах некругового сечения
- •5.5 Снижение потерь напора на трение при турбулентном движении
- •5.6 Местные гидравлические сопротивления
- •5.6.1 Внезапное расширение трубопровода
- •5.6.2 Внезапное сужение трубопровода
- •5.6.3.Вход в трубу через диафрагму
- •5.6.4.Резкое уменьшение диаметра трубы
- •5.6.5 Постепенное расширение
- •5.6.6 Постепенное сужение трубы
- •6.1 Циркуляция скорости
- •6.2 Степенные законы распределения скоростей
- •6.3 Модели турбулентности
- •7. Основы теории пограничного слоя
- •7.1 Понятие о пограничном слое
- •7.2 Ламинарный погранслой
- •7.3 Турбулентный погранслой
- •7.4 Отрыв пограничного слоя, и отрыв потока
- •7.4 Методы управления пограничным слоем
- •7.4.1 Предотвращение отрыва слоя при помощи сосредоточенного отсоса из него жидкости или ввода в слой жидкости.
- •7.4.2 Затягивание ламинарного участка слоя путем придания носовой части тела оптимальной формы
- •7.4.3 Ламинаризация пограничного слоя при непрерывном (распределенном) отборе потока
- •7.4.4 Ламинаризация пограничного слоя при щелевом отборе
- •8 Газодинамические процессы {Модуль 3}
- •8.1 Уравнения течения жидкости в трубах переменного сечения
- •8.2 Уравнение неразрывности струи
- •8.3 Сопло Лаваля и скорость истечения
- •8.4 Скорость звука
- •8.5 Газодинамические функции
- •8.5.1 Гдф характеризующие термодинамическое состояние.
- •8.5.2 Гдф характеризующие Разгон потока (q, y, ξ)
- •8.5.3 Гдф z, f, r – характеризуют импульс потока.
- •9 Плоский сверхзвуковой поток
- •9.1 Термодинамика ударных волн
- •9.2 Происхождение ударных волн
- •9.3 Ударная волна, вызванная летательным аппаратом
- •9.4 Скачки уплотнения. Образование скачков уплотнения
- •9.4.1. Прямой скачок
- •9.4.2 Косые скачки уплотнения
- •9.5 Формы скачков уплотнения
- •9.6 Критическая скорость
- •9.7 Течение Прандтля Майера
- •9.8 Закон обращения воздействия
- •1) Расходное воздействие на газовый поток.
- •2) Механическое воздействие.
- •3) Тепловое воздействие
- •4) Воздействие трением.
- •9.9 Гидравлический удар
- •9.10 Истечение жидкости и газа через отверстия и насадки.
4.2 Число Рейнольдса
Как истинный ученый, Рейнольдс не остановился на констатации факта. Он предположил, что увеличении скорости потока приводит к возникновению каких-то возмущений, дестабилизирующих его структуру. При этом из двух категорий сил, действующих на жидкие частицы, вязкого трения и инерции, первые играют стабилизирующую роль, а вторые – дестабилизирующую. Таким образом, отношение этих сил может служить критерием (мерой) устойчивости потока, т.е.
Состояние (режим) потока жидкости в трубе зависит от величины безразмерного числа, которое учитывает основные факторы, определяющие это движение:
среднюю скорость v,
диаметр трубы d,
плотность жидкости р,
и ее абсолютную вязкость µ.
Это число имеет вид:
Величина d в числе Рейнольдса может быть заменена любым линейным параметром, связанным с условиями течения или обтекания (диаметр трубы, диаметр падающего в жидкости шара, длина обтекаемой жидкостью пластинки и др.).
Значение числа Рейнольдса, при котором происходит переход от ламинарного движения к турбулентному, называют критическим числом Рейнольдса и обозначают ReKp.
при
режим движения является турбулентным,
при
– ламинарным.
Величина критического числа Рейнольдса зависит от условий входа в трубу, шероховатости ее стенок, отсутствия или наличия первоначальных возмущений в жидкости, конвекционных токов и др.
Наиболее часто в расчетах принимают для критического числа Рейнольдса значение
Проведенные исследования показывают также, что критическое значение числа Рейнольдса увеличивается в сужающихся трубах и уменьшается в расширяющихся.
Это можно объяснить тем, что при ускорении движения частиц жидкости в сужающихся трубах их тенденция к поперечному перемешиванию уменьшается, а при замедленном течении в расширяющихся трубах усиливается.
По критическому значению числа Рейнольдса легко можно найти также критическую скорость, т. е. скорость, ниже которой всегда будет иметь место ламинарное движение жидкости:
Ламинарный режим для воды и воздуха возможен лишь при их движении в трубах очень малого диаметра. Более вязкие жидкости, например масла, могут двигаться ламинарно даже в трубах значительного диаметра.
где:l – линейные размеры элемента жидкости
Таким образом, число Рейнольдса характеризует относительную роль сил вязкости.
Чем меньше число Рейнольдса, тем большую роль играют силы вязкости в движении жидкости. Чем больше число Рейнольдса, тем больше влияние сил инерции в потоке по сравнению с силами вязкости.
4.3 Виды гидравлических сопротивлений
Рассмотрим участок трубы, заполненный жидкостью (рис. Х.1). Если жидкость в трубе не движется, то ее взаимодействие со стенками приводится к одной равнодействующей, направленной вниз (вес жидкости).
При движении жидкости между нею и стенками трубы возникают дополнительные силы сопротивления, в результате чего частицы жидкости, прилегающие к поверхности трубы, тормозятся. Это торможение благодаря вязкости жидкости передается
Равнодействующая сил сопротивления Т направлена в сторону, противоположную движению, и параллельна направлению движения (см. рис. Х.1). Это и есть силы гидравлического трения (сопротивления гидравлического трения).
Энергию или напор, необходимые для преодоления сил сопротивления, называют потерянной энергией или потерянным напором.
Штерн напора, затрачиваемые на преодоление сопротивления трения, носят название потерь напора на трение или потерь напора по длине потока (линейные потери напора) и обозначают через hтр.
Однако потери напора, возникающие при движении жидкости, зависят не только от трения о стенки. Рассмотрим следующий опыт (рис. Х.2).
Бак Wнаполнен водой при постоянном уровне Н и питает горизонтальную трубу АВдлиной l одинакового по всей длине диаметра d. Пусть расход воды равен Q. Если трубу АВ заменить трубой CDтой Же длины l, но образованной из последовательно расположенных участков диаметром соответственно dи 2d, то расход изменится. Пусть новый расход равен Q'. Оказывается, что Q'<Q (иногда Q'=0,5 Q и даже еще меньше).
Таким образом, трение является не единственной возможной причиной, вызывающей потери напора; резкие изменения сечения также оказывают сопротивление движению жидкости (так называемое сопротивление формы) и вызывают потери энергии.(примеры: внезапное сужение, внезапное расширение, диафрагма, постепенное сужение расширение)
Существуют и другие причины, вызывающие потери напора, например, внезапное изменение направления движения жидкости.
Еще один тип вызывающий потери напора – разветвление потока (тройники отверстия в трубе…)
Потери напора, вызываемые резким изменением конфигурации границ потока (затрачиваемые на преодоление сопротивления формы), называют местными потерями напора или потерями напора на местные сопротивления и обозначают через hм
Таким образом, потери напора hw при движении жидкости складываются из потерь напора на трение и потерь на местные сопротивления, т. е.
hw = hTp + hм. (Х.1)