Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Закон Био.doc
Скачиваний:
0
Добавлен:
14.04.2019
Размер:
790.53 Кб
Скачать

12.4. Полная система уравнений Максвелла в дифференциальной форме

. (23)

, .

Эту систему уравнений необходимо дополнить материальными уравнениями, характе­ризующими электрические и магнитные свойства среды:

, , . (24)

Итак, после открытия взаимосвязи между электрическими и магнитным полями ста­ло ясно, что эти поля не существуют обособлено, независимо одно от другого. Нельзя соз­дать переменное магнитное поле без того, чтобы одновременно в пространстве не возникло и электрическое поле.

Отметим, что покоящийся в некоторой системе отсчета электрический заряд создает только электростатическое поле в этой системе отсчета, но он будет создавать магнитное поле в системах отсчета, относительно которых он движется. То же самое относится и к неподвижно­му магниту. Заметим также, что уравнения Максвелла инвариантны к преобразованиям Лоренца: причем для инерциальных систем отсчета К и К’ выполняются следующие соотношения: , . (25)

На основании изложенного можно сделать вывод, что электрические и магнитные поля являются проявлением единого поля, которое называют электромагнитным полем. Оно распространяется в виде электромагнитных волн.

12.5. Волновые уравнения

Из уравнений Максвелла следует, что

(26) (27)

где

+ + . (28)

- оператор Лапласа, ,

здесь с= м/с- электродинамическая постоянная, значение которой совпадает с вели­чиной скорости света в вакууме.

Уравнения (26) и (27) представляют собой типичные волновые уравнения. Любая фун­кция, удовлетворяющая таким уравнениям, представляет собой электромагнитную волну, распространяющуюся с фазовой скоростью , (29)

где называют абсолютным показателем преломления вещества.