
- •4. Методологические вопросы биофизики. История развития отечественной биофизики.
- •5. Первичные процессы поглощения энергии ионизирующих излучений.
- •10. Математические модели. Принципы построения математических моделей биологических систем.
- •11. Механизмы поглощения рентгеновского и гамма- излучений, нейтронов, ускоренных заряженных частиц.
- •13. Динамические модели биологических процессов.
- •15. Записать уравнение реакции 1-го и 2-го порядка. Как определить константу химической реакции из эксперимента.
- •17. Действие ионизирующих излучений на многоклеточный организм.
- •21. Нарисовать простейшие эквивалентные схемы биообъектов.
- •24. В чем сущность метода определения электроемкости при замыкании на сопротивление
- •26. Структурная организация и функционирование фотосинтетических мембран.
- •28. Модели экологических систем.
- •29. Основные стадии фотобиологического процесса Механизмы фотобиологических и фотохимических стадий.
- •30. Описать схему для электрофореза и назначение каждого элемента этой схемы.
- •32. Проблемы первичного акта фотосинтеза.
- •36. Какой вид имеет дифференциальное уравнение, описывающее простейшие представления Бернштейна?
- •39. Сформулируйте закон Био.Покажите на эвм изменение интенсивности светового пучка при прохождении через оптически активную среду.
- •40. Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.
- •42. Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на эвм.
- •44. Хеморецепция.
- •45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
- •50. Бактериородопсин как молекулярный фотоэлектрический генератор.
- •51. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи.
- •58. Антиоксиданты, механизм их биологического действия.Естественные антиоксиданты тканей и их биологическая роль.
- •59. Закон Вебера-Фехнера.
- •60. Как проверить экспериментально закон Вебера-Фехнера.
- •65. Основные типы сократительных и подвижных систем.
- •66. Почему принято делить общий процесс фотосинтеза на световые и темновые стадии? Что делает энергетически возможным протекание темновых стадий фотосинтеза?
- •67. Потенциал покоя, его происхождения. Взаимодействие квантов с молекулами.
- •72. Основные методы регистрации радиоактивных излучений и частиц Их характеристика.
- •73. Функционирование поперечнополосатой мышцы позвоночных. Молекулярные механизмы немышечной подвижности.
- •74. Проблема вкусовых рецепторных белков.
- •76. Общие представления о структуре и функции рецепторных клеток в работе сенсорных систем.
- •77. Понятие фазатона мозга и движение аттрактора всоч в фазовом пространстве с возрастом человека
- •80. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •81. Определение с помощью эвм показателей асимметрии в аттракторах метеофакторов Югры (р и т).
80. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
Метод изотопного обмена. Исторически возникновение понятия о конформационной подвижности белков связано с развитием метода изотопного обмена атомов водорода. Явление изотопного обмена состоит в том, что атомы водорода, входящие в основном в амидные пептидные группы, могут вступать в обратимую реакцию обмена с атомами дейтерия и трития, находящимися в окружающем растворителе. Метод изотопного обмена дает уникальную возможность регистрировать ничтожные концентрации конформационно неравновесных состояний. Но он не позволяет установить, какая часть молекулы белка и каким образом должна перестроиться, чтобы ее NH-группы оказались доступными растворителю. Этим методом нельзя определить частоту конформационных движе нии, которая представляет собой важную характеристику внутримолекулярной по движности белка. Ценность метода изотопного обмена определяется информацией о локальных конформационно неравновесных состояниях, которые, накапливаясь в достаточных концентрациях, могут способствовать конформационным переходам, сопровождающим функциональные процессы в белках. Сегодня люминесцентные анализ охватывает широкий круг методов определения разнообразных объектов от простых ионов и молекул до высокомолекулярных соединений и биологических объектов. Детектируется люминесценция самого объекта или его производных, возможно также использование изменения люминесценции специфичных агентов. Для сложных проб люминесцентное детектирование сочетается с химическим разделением (хроматография, электрофорез) или с биологическим выделением (иммуноанализ, метод полимеразной цепной реакции - ПЦР). Процесс люминесценции включает в себя переход молекул на возбужденный электронный уровень, колебательную релаксацию в возбужденном состоянии, переход на основной электронный уровень либо с испусканием света (собственно люминесцентное излучение), либо безызлучательно и колебательной релаксации в основном состоянии. Спиновая метка. Суть метода: Присоединение к функц-ой группе белка свободного радикала и изучения хар-к его сигналов ЭПР. Наиболее удобны в этом отн-ии нитроксильные радикалы, сод-ие свободнорадикальную группу N-О. Неспаренный электрон прин-т 2p-орбиталям N и О2 и фактически делакализован м\ду атомами Nи О, эф-но взаимодействуют по диполь-дипольному механизму с магнитным моментом спина ядра атома азота. В силу этого происходит расщепление линии поглощения сигнала ЭПР (СТС) на три составляющие, соответствующее трем разным проекциям ядерного спина азота на направление Но. Вид спектра определяется главным образом анизотропным взаимодействием. Гамма-резонансная метка. Этот метод дает важную информацию о динамике белков. Он позволяет определять амплитуды смещений атомов в структуре белка на коротких временах (10-7-10-9 с). Он основан на том, что при поглощении у-кванта происходит переход ядра из основного (Е\) в возбужденное состояние (Е-2) согласно обычному закону ∆Е = Е2 — Е1 = hv, где для ядерных уровней ∆Е составляет 103-105 эВ. Поглощение у-квантов наблюдается на ядрах тяжелых атомов Fe, Cu, Pb. Для изотопа 57Fe, содержащегося в природных соединениях в количестве 2,2%, величина ∆Е при резонансном поглощении составляет 14,4 КэВ, а время жизни ядра 57Fe в возбужденном состоянии τ* ~ 10 -7 с. Отсюда согласно соотношению неопределенностей для энергии можно найти, что естественная ширина резонансной линии поглощения у-квантов составляет очень малую величину Г ~ 10 -8 эВ. Спектры ЯГР (ядерного гамма-резонанса) отражают химическую и физическую структуру окружения ядра и характеризуются химическим сдвигом, квадру-польным расщеплением, формой линии и сверхтонкой структурой. В настоящее время ЯГР становится мощным орудием в расшифровке атомной структуры активных центров. Ядерный магнитный резонанс (ЯМР). Одним из мощных методов изучения динамики биополимеров является метод ядерного магнитного резонанса. Сущность явления ЯМР сходна в основных чертах с электронным парамагнитным резонансом. Ядра (помимо ядер с четным числом протонов и нейтронов), к числу которых принадлежат основные изотопы углерода 612С и кислорода 816О), имеют отличные от нуля значения спина І (принятое для ядер обозначение) и магнитного дипольного момента. При этом магнитные моменты разных ядер отличны друг от друга. Условия резонанса для ядер, например протонов, входящих в состав молекул, будут отличаться от условий для свободного протона вследствие экранирования электронными оболочками и влияния ядер химического окружения протона. Поэтому резонансное магнитное поле в должно быть заменено эффективным полем, учитывающим влияние окружения. Кроме того, магнитные моменты различных ядер взаимодействуют между собой и электронами в молекуле, причем характер этого взаимодействия также зависит от окружения ядра. Эти факторы влияют на параметры спектра ЯМР, давая тем самым информацию о химических свойствах и внутримолекулярной динамике образца. Импульсные методы ЯМР. основаны на том, что система спинов, ориентированных в постоянном внешнем магнитном поле, возбуждается импульсом радиочастотного поля и выводится тем самым из равновесия. Это приводит к отклонению вектора микроскопической намагниченности от его первоначальной ориентации вдоль направления поля Но В результате система ядерных спинов начинает прецес-сировать вокруг Но, наводя ЭДС в приемной катушке, что регистрируется в виде сигнала свободной индукции после окончания радиочастотного импульса. Сигнал свободной индукции представляет фурье-отображение спектра, по которому может быть восстановлен и сам спектр после соответствующей обработки с помощью ЭВМ. Этот метод позволяет резко ускорить регистрацию спектров и его широко применяют в современных спектрометрах ЯМР. Таким образом, метод ЯМР позволяет идентифицировать определенные виды внутримолекулярного движения в молекуле белка. Все это дает возможность осуществлять прямые экспериментальные исследования связи между внутренней динамикой и функцией белковых молекул.