
- •4. Методологические вопросы биофизики. История развития отечественной биофизики.
- •5. Первичные процессы поглощения энергии ионизирующих излучений.
- •10. Математические модели. Принципы построения математических моделей биологических систем.
- •11. Механизмы поглощения рентгеновского и гамма- излучений, нейтронов, ускоренных заряженных частиц.
- •13. Динамические модели биологических процессов.
- •15. Записать уравнение реакции 1-го и 2-го порядка. Как определить константу химической реакции из эксперимента.
- •17. Действие ионизирующих излучений на многоклеточный организм.
- •21. Нарисовать простейшие эквивалентные схемы биообъектов.
- •24. В чем сущность метода определения электроемкости при замыкании на сопротивление
- •26. Структурная организация и функционирование фотосинтетических мембран.
- •28. Модели экологических систем.
- •29. Основные стадии фотобиологического процесса Механизмы фотобиологических и фотохимических стадий.
- •30. Описать схему для электрофореза и назначение каждого элемента этой схемы.
- •32. Проблемы первичного акта фотосинтеза.
- •36. Какой вид имеет дифференциальное уравнение, описывающее простейшие представления Бернштейна?
- •39. Сформулируйте закон Био.Покажите на эвм изменение интенсивности светового пучка при прохождении через оптически активную среду.
- •40. Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.
- •42. Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на эвм.
- •44. Хеморецепция.
- •45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
- •50. Бактериородопсин как молекулярный фотоэлектрический генератор.
- •51. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи.
- •58. Антиоксиданты, механизм их биологического действия.Естественные антиоксиданты тканей и их биологическая роль.
- •59. Закон Вебера-Фехнера.
- •60. Как проверить экспериментально закон Вебера-Фехнера.
- •65. Основные типы сократительных и подвижных систем.
- •66. Почему принято делить общий процесс фотосинтеза на световые и темновые стадии? Что делает энергетически возможным протекание темновых стадий фотосинтеза?
- •67. Потенциал покоя, его происхождения. Взаимодействие квантов с молекулами.
- •72. Основные методы регистрации радиоактивных излучений и частиц Их характеристика.
- •73. Функционирование поперечнополосатой мышцы позвоночных. Молекулярные механизмы немышечной подвижности.
- •74. Проблема вкусовых рецепторных белков.
- •76. Общие представления о структуре и функции рецепторных клеток в работе сенсорных систем.
- •77. Понятие фазатона мозга и движение аттрактора всоч в фазовом пространстве с возрастом человека
- •80. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •81. Определение с помощью эвм показателей асимметрии в аттракторах метеофакторов Югры (р и т).
73. Функционирование поперечнополосатой мышцы позвоночных. Молекулярные механизмы немышечной подвижности.
Структурная организация скелетной мышцы Мышечное волокно и миофибрилла. Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл , которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности. Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты . Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина. Миозиновые филламенты образованы повторяющимися молекулами белка миозина . Каждая молекула миозина имеет головку и хвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик . Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ . Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга. Фазы мышечного сокращения При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы : • латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия; • фаза укорочения (около 50 мс); • фаза расслабления (около 50 мс). Режимы мышечного сокращения В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов . • Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений. • При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы. Во время выполнения работы мышца может сокращаться: • изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте; • изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы; • ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе. Молекулярные механизмы сокращения скелетной мышцы Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий. • Головки миозина присоединяются к центрам связывания актинового филламента. • Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга . • Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ . • Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается .