
- •4. Методологические вопросы биофизики. История развития отечественной биофизики.
- •5. Первичные процессы поглощения энергии ионизирующих излучений.
- •10. Математические модели. Принципы построения математических моделей биологических систем.
- •11. Механизмы поглощения рентгеновского и гамма- излучений, нейтронов, ускоренных заряженных частиц.
- •13. Динамические модели биологических процессов.
- •15. Записать уравнение реакции 1-го и 2-го порядка. Как определить константу химической реакции из эксперимента.
- •17. Действие ионизирующих излучений на многоклеточный организм.
- •21. Нарисовать простейшие эквивалентные схемы биообъектов.
- •24. В чем сущность метода определения электроемкости при замыкании на сопротивление
- •26. Структурная организация и функционирование фотосинтетических мембран.
- •28. Модели экологических систем.
- •29. Основные стадии фотобиологического процесса Механизмы фотобиологических и фотохимических стадий.
- •30. Описать схему для электрофореза и назначение каждого элемента этой схемы.
- •32. Проблемы первичного акта фотосинтеза.
- •36. Какой вид имеет дифференциальное уравнение, описывающее простейшие представления Бернштейна?
- •39. Сформулируйте закон Био.Покажите на эвм изменение интенсивности светового пучка при прохождении через оптически активную среду.
- •40. Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.
- •42. Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на эвм.
- •44. Хеморецепция.
- •45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
- •50. Бактериородопсин как молекулярный фотоэлектрический генератор.
- •51. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи.
- •58. Антиоксиданты, механизм их биологического действия.Естественные антиоксиданты тканей и их биологическая роль.
- •59. Закон Вебера-Фехнера.
- •60. Как проверить экспериментально закон Вебера-Фехнера.
- •65. Основные типы сократительных и подвижных систем.
- •66. Почему принято делить общий процесс фотосинтеза на световые и темновые стадии? Что делает энергетически возможным протекание темновых стадий фотосинтеза?
- •67. Потенциал покоя, его происхождения. Взаимодействие квантов с молекулами.
- •72. Основные методы регистрации радиоактивных излучений и частиц Их характеристика.
- •73. Функционирование поперечнополосатой мышцы позвоночных. Молекулярные механизмы немышечной подвижности.
- •74. Проблема вкусовых рецепторных белков.
- •76. Общие представления о структуре и функции рецепторных клеток в работе сенсорных систем.
- •77. Понятие фазатона мозга и движение аттрактора всоч в фазовом пространстве с возрастом человека
- •80. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •81. Определение с помощью эвм показателей асимметрии в аттракторах метеофакторов Югры (р и т).
72. Основные методы регистрации радиоактивных излучений и частиц Их характеристика.
Различные регистрирующие устройства позволяют изучать в основном заряженные частицы, которые вызывают ионизацию среды, т.е. при соударении вырывают электрон из атомов частиц среды, сообщая ему энергию ионизации Ei. Однако незаряженные частицы, особенно с большой энергией также могут взаимодействовать с электронами атомов или ядрами и, в конечном итоге, могут быть зарегистрированы. Основные методы и устройства регистрации частиц. Ионизационная камера. Это герметичный сосуд с двумя электродами, заполненный газом (воздух, водород, азот и др. ) при пониженном давлении. Между электродами создается разность потенциалов в пределах 100- 1500 В. Регистрируемая частица, попадая в счетчик, вызывает ионизацию газа и появление тока в цепи. Камера работает в режиме насыщения- все электроны и ионы, образуемые частицей, достигают электродов, поэтому величина тока I пропорциональна числу частиц (интенсивности излучения) N, т.е. I=kN. Отсутствие или наличие ударной ионизации влияет только на величину тока I, которая в любом случае зависит от количества частиц N. Однако если и дальше увеличивать разность потенциалов, то мы попадаем в область самостоятельного разряда, который вызывается внешней частицей, но не прекращается при последующем отсутствии частиц и нужны специальные устройства для его гашения. Счетчик Гейгера- Мюллера (СГМ). В основе его работы- самостоятельный газовый разряд. Конструктивно СГМ выполнен в виде стеклянной трубки, покрытой изнутри тонким слоем меди (катод) и центральной вольфрамовой нити (анод). Частицы высоких энергий (b- ,g- и др.) проникают через стенку датчика, для a-частиц в торце счетчика делают окошко из алюминиевой фольги или слюды. Возникающий самостоятельный разряд кратковременный, т.к. разрядный ток создает падение напряжения на сопротивлении R, которое велико и напряжение между электродами счетчика (соответственно и Е) уменьшается настолько, что энергии электронов или ионов qE'l уже недостаточно для ионизации встречных молекул. Происходит быстрая рекомбинация электронов и ионов, газовый разряд прекращается. Счетчик приходит в исходное состояние и может регистрировать следующую частицу. Таким образом каждая частица, попадая в счетчик, дает импульс тока и скачок напряжения на R, который можно регистрировать любым счетчиком импульсов. Если мощность излучения больше, то счетчик не успевает срабатывать и надо воспользоваться ионизационной камерой, в которой I=kN.
Камера Вильсона. Принцип её работы основан на конденсации пересыщенных паров воды или спирта на цепочке ионов, образующихся вдоль траектории движения регистрируемых частиц. Чаще всего камера выполнена в виде цилиндра с черным подвижным дном и стеклянным верхом. Внутри её находятся пары спирта или воды в смеси с аргоном или другим инертным газом. При резком сжатии пары становятся пересыщенными и образующийся трек снимают на черном фоне. Действуя электрическими или магнитными полями в перпендикулярном вектору скорости частиц направлении, можно изменить траекторию и по её радиусу судить о скорости движения частиц, их массе. Толстослойные пластинки. Способ регистрации основан на действии заряженных частиц или их продуктов распада (взаимодействия с веществом подобно квантам света) при попадании в фотоэмульсию. Так как плотность последней велика, то длина треков частиц невелика (около 1 мм) и обычно такие пластинки обследуют при поперечном срезе под микроскопом. Пузырьковая камера. Рабочее тело- перегретый жидкий водород (или другое тело), в котором регистрируемые частицы создают центры парообразования в виде треков. Как и в камере Вильсона возможно действие поперечных магнитных (В) и электрических (Е) полей.