
- •4. Методологические вопросы биофизики. История развития отечественной биофизики.
- •5. Первичные процессы поглощения энергии ионизирующих излучений.
- •10. Математические модели. Принципы построения математических моделей биологических систем.
- •11. Механизмы поглощения рентгеновского и гамма- излучений, нейтронов, ускоренных заряженных частиц.
- •13. Динамические модели биологических процессов.
- •15. Записать уравнение реакции 1-го и 2-го порядка. Как определить константу химической реакции из эксперимента.
- •17. Действие ионизирующих излучений на многоклеточный организм.
- •21. Нарисовать простейшие эквивалентные схемы биообъектов.
- •24. В чем сущность метода определения электроемкости при замыкании на сопротивление
- •26. Структурная организация и функционирование фотосинтетических мембран.
- •28. Модели экологических систем.
- •29. Основные стадии фотобиологического процесса Механизмы фотобиологических и фотохимических стадий.
- •30. Описать схему для электрофореза и назначение каждого элемента этой схемы.
- •32. Проблемы первичного акта фотосинтеза.
- •36. Какой вид имеет дифференциальное уравнение, описывающее простейшие представления Бернштейна?
- •39. Сформулируйте закон Био.Покажите на эвм изменение интенсивности светового пучка при прохождении через оптически активную среду.
- •40. Понятие обобщенных сил и потоков. Линейные соотношения и соотношения взаимности Онзагера.
- •42. Как влияет удаление малозначащих признаков из обучающей выборки на процесс обучения нейросети. Пример на эвм.
- •44. Хеморецепция.
- •45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
- •50. Бактериородопсин как молекулярный фотоэлектрический генератор.
- •51. По каким физическим параметрам классифицируются биопотенциалы и какие требования предъявляются к усилителям биопотенциалов в этой связи.
- •58. Антиоксиданты, механизм их биологического действия.Естественные антиоксиданты тканей и их биологическая роль.
- •59. Закон Вебера-Фехнера.
- •60. Как проверить экспериментально закон Вебера-Фехнера.
- •65. Основные типы сократительных и подвижных систем.
- •66. Почему принято делить общий процесс фотосинтеза на световые и темновые стадии? Что делает энергетически возможным протекание темновых стадий фотосинтеза?
- •67. Потенциал покоя, его происхождения. Взаимодействие квантов с молекулами.
- •72. Основные методы регистрации радиоактивных излучений и частиц Их характеристика.
- •73. Функционирование поперечнополосатой мышцы позвоночных. Молекулярные механизмы немышечной подвижности.
- •74. Проблема вкусовых рецепторных белков.
- •76. Общие представления о структуре и функции рецепторных клеток в работе сенсорных систем.
- •77. Понятие фазатона мозга и движение аттрактора всоч в фазовом пространстве с возрастом человека
- •80. Методы изучения конформационной подвижности: изотопный обмен, люминесцентные методы, спиновая метка, гамма-резонансная метка ямр высоко разрешения, импульсные методы ямр.
- •81. Определение с помощью эвм показателей асимметрии в аттракторах метеофакторов Югры (р и т).
44. Хеморецепция.
Хеморецепция, восприятие одноклеточным организмом или специализированными клетками (хеморецепторами) многоклеточного организма существенных для его жизнедеятельности химических раздражителей, находящихся во внешней или внутренней среде. Хеморецептор (chemoreceptor) - афферентный нейрон, который отвечает генерацией нервного импульса на взаимодействие рецепторного белка с определенной химической молекулой на появление в организме особых химических соединений. Импульс распространяется по чувствительным нервам. Хеморецепторы в большом количестве присутствуют во вкусовых сосочках языка, а также на слизистой оболочке носа. Способность в той или иной мере анализировать химический состав окружающей среды и реагировать определённым образом на его изменения присуща всем живым организмам. На основе этой способности у них в ходе эволюции образовалось несколько специализированных видов Х. У микроорганизмов сравнительно хорошо изучена Х. пищевых веществ. У многоклеточных организмов обособляется сенсорная Х. , на основе которой развиваются органы чувств. Для позвоночных животных, а также для насекомых характерны специализированные формы Х. - обонятельная и вкусовая. У наземных животных контактная и дистантная Х. обычно представлена соответственно вкусовой и обонятельной рецепцией. У животных имеется и малоспециализированный тип Х. - "общее химическое чувство", с помощью которого обеспечивается чувствительность покровов тела к едким, раздражающим веществам. Химический анализ внутренних сред организма (например, крови, тканевой жидкости) осуществляется посредством интерорецепции. Наряду с сенсорной Х. и интерохеморецепцией у многоклеточных организмов в ходе эволюционного развития выделились др. типы клеточной рецепции, которые также можно отнести к Х. в широком смысле слова, например рецепция гормонов, рецепция синаптических медиаторов.
45. Показать последовательность обучения и тестирования нейронной сети. Что такое внешняя выборка.
Искусственная нейронная сеть (ANN — artificial neural network) представляет собой вычислительную архитектуру для обработки сложных данных с помощью множества связанных между собой процессоров и вычислительных путей. Искусственные нейронные сети, созданные по аналогии с человеческим мозгом, способны обучаться и анализировать большие и сложные наборы данных, которые с помощью более линейных алгоритмов обработать крайне сложно. Для обучения нейронной сети необходима обучающая выборка (задачник), состоящая из примеров. Каждый пример представляет собой задачу одного и того же типа с индивидуальным набором условий (входных параметров) и заранее известным ответом. Например, в качестве входных параметров в одном примере могут использоваться данные обследования одного больного, тогда заранее известным ответом в этом примере может быть диагноз. Несколько примеров с разными ответами образуют задачник. Задачник располагается в базе данных, каждая запись которой является примером. Не останавливаясь на математических алгоритмах, подробно описанных в монографии [5.45], рассмотрим общую схему обучения нейросети. 7. Из обучающей выборки берется текущий пример (изначально, первый) и его входные параметры (представляющие в совокупности вектор входных сигналов) подаются его на входные синапсы обучаемой нейросети. Обычно каждый входной параметр примера подается на один соответствующий входной синапс. 8. Нейросеть производит заданное количество тактов функционирования, при этом вектор входных сигналов распространяется по связям между нейронами (прямое функционирование). 9. Измеряются сигналы, выданные теми нейронами, которые считаются выходными. 10. Производится интерпретация выданных сигналов, и вычисляется оценка, характеризующая различие между выданным сетью ответом и требуемым ответом, имеющимся в примере. Оценка вычисляется с помощью соответствующей функции оценки. Чем меньше оценка, тем лучше распознан пример, тем ближе выданный сетью ответ к требуемому. Оценка, равная нулю, означает что требуемое соответствие вычисленного и известного ответов достигнуто. Заметим, что только что инициализированная (необученная) нейросеть может выдать правильный ответ только совершенно случайно. 11. Если оценка примера равна нулю, ничего не предпринимается. В противном случае на основании оценки вычисляются поправочные коэффициенты для каждого синаптического веса матрицы связей, после чего производится подстройка синаптических весов (обратное функционирование). В коррекции весов синапсов и заключается обучение. 12. Осуществляется переход к следующему примеру задачника и вышеперечисленные операции повторяются. Проход по всем примерам обучающей выборки с первого по последний считается одним циклом обучения. При прохождении цикла каждый пример имеет свою оценку. Вычисляется, кроме того, суммарная оценка множества всех примеров обучающей выборки. Если после прохождения нескольких циклов она равна нулю, обучение считается законченным, в противном случае циклы повторяются. Количество циклов обучения, также как и время, требующееся для полного обучения, зависят от многих факторов - величины обучающей выборки, количества входных параметров, вида задачи, типа и параметров нейросети и даже от случайного расклада весов синапсов при инициализации сети. 46. Взаимодействие макромолекул с растворителем. Состояние воды и гидрофобные взаимодействия в биоструктурах.
Так как большинство белков функционирует в водной среде, то взаимодействие составляющих их мономеров с водой определяет пространственную конформацию макромолекулы белка в целом. Молекула воды является диполем из-за своей асимметрии. В водном растворе атом О2 располагается как бы в центре тетраэдра, в двух вершинах которого находятся атомы Н. Две пары электронов кислорода, не участвующие в образовании валентной связи, находятся на вытянутых орбиталях, оси которых направлены к двум вершинам тетраэдра. Эти электронные пары несут отрицательный заряд и притягивают атомы водорода двух соседних молекул, то есть образуют водородные связи. Благодаря этим взаимодействиям в жидкой воде формируются ассоциации молекул, называемые кластерами. Структура кластеров сходна со структурой льда. Однако эта кристаллическая решетка отличается определенной "рыхлостью" ( именно этим объясняется невысокая плотность льда). Вместе с тем, даже после полного таяния льда в жидкой фазе воды сохраняются льдоподобные структуры - кластеры (расчеты показывают, что если бы их не было, то плотность жидкой воды была бы =1.8 г/мл, вместо 1.0 г/мл). Наличие в воде кластеров подтверждается данными рентгенографических исследований. Между неструктурированной водой и кластерами постоянно осуществляется обмен молекулами, так что в среднем время жизни кластера составляет 10-10 с. При 20 оС в воде доля несвязанных в кластеры молекул составляет 29.5%. С увеличением температуры средний размер кластера уменьшается, и доля несвязанных молекул возрастает (именно плавлением кластеров объясняется аномально высокая теплоемкость воды).
В воде хорошо растворяются такие органические соединения, которые содержат полярные группы и способны вступать в диполь-дипольное взаимодействие с молекулами воды или образовывать с ними водородные связи. Такими, в частности, являются группы: Напротив, неполярные соединения плохо растворимы в воде. Физические причины этих явлений были выяснены после измерения термодинамических параметров процессов растворения. Было установлено, что в случае плохой растворимости углеводорода в воде изменение свободной энергии положительно, и, следовательно, энтропия системы уменьшается. Прямыми физическими исследованиями было показано, что при этом происходит увеличение доли кластеров. При растворении молекулы углеводов втискиваются в полости внутри тетраэдрических ячеек кластеров и вытесняют оттуда неструктурированную воду. Последняя образует новые кластеры, и упорядоченность системы увеличивается, а значит, энтропия уменьшается. Поэтому гидрофобные взаимодействия являются результатом свойств воды, а не каких-то особых сил, связывающих неполярные группы друг с другом. Таким образом, ассоциация неполярных молекул в воде за счет гидрофобных взаимодействий определяется выталкивающим действием воды на неполярные соединения, что обусловлено тенденцией молекул воды к достижению состояния максимальной неупорядоченности. Все аминокислотные остатки, входящие в состав полипептидной цепи условно разделяются на две группы: -неполярные (гидрофобные) -полярные (гидрофильные) Степень гидрофобности остатка определяют по разности свободных энергий растворения аминокислоты в слабополярном растворителе и воде (обычно используют этиловый спирт). Гипотеза об определяющей роли гидрофобных взаимодействий была доказана в 1944 году. Идея состояла в том, что гибкая молекула белка в воде сворачивается в глобулу (поскольку полярные остатки белка стремятся к максимальному контакту с водным окружением, а неполярные - к минимальному контакту). Из геометрии известно, что минимальной поверхностью при заданном объеме обладает шар. Стремление неполярных остатков образовать внутри белковой части некое подобие шарообразной капли, а полярных - сосредоточиться на ее поверхности, и приводит к образованию компактного тела - глобулы с гидрофобным ядром и гидрофильной поверхностью.
47. Восприятие запахов: пороги, классификация запахов. Запах. Орган обоняния – периферический аппарат обонятельного анализатора, который лежит в верхнем отделе полости носа. Часть слизистой носа, покрывающая верхнюю носовую раковину и верхний отдел носовой перегородки, называется обонятельной областью слизистой носа. Эпителий здесь называется обонятельным и является рецепторным аппаратом обонятельного анализатора. В составе эпителия находятся три вида клеток: 1 – обонятельные (рецепторные),2 – опорные,3 – базальные (регенеративные). Обонятельные клетки которых более 10 млн – биполярные. Их периферические отростки имеют расширение – пузырек, вооруженный ресничками. Обонятельная булава иначе – обонятельный пузырек Ван-дер-Стрихта. Центральные отростки формируют обонятельные нервы, которые в количестве 15-20 проникают в полость мозгового черепа через продырявленную пластинку решетчатой кости к обонятельным луковицам. Рецепторные клетки высокочувствительные, они воспринимают одоранты (например, меркаптан) в миллионных долях мг/м3. При этом только 24 молекулы одоранта, находящегося в воздухе, достигают рецепторов. Классификация запахов Линнея — разделение запахов по качественности ощущения, автор — шведский ботаник К. Линней. Выделяется 7 основных запахов: ароматические (красная гвоздика), бальзамические (лилия), амброзиальные (мускус), луковые (чеснок), псиные (валериана), отталкивающие (некоторые насекомые), тошнотворные (падаль). По Зваардемакеру существует 9 классов, которые делятся на подклассы: 1 – класс эфрирных запахов (ацетон, хлороформ), 2 – класс ароматических запахов (камфорные, пряные, анисовые, лимонные, миндальные), 3 – класс цветочных запахов (ванилин), 4 – класс мускусных запахов, 5 – класс чесночных запахов (сероводород), 6 – класс пригорелых (бальзамных) запахов (бензол, фенол), 7 – класс каприловых запахов, 8 – класс отталкивающих запахов (хинин, пиридин), 9 – класс тошнотворных запахов (индол, скатол). Импульсы от рецепторов поступают в обонятельную луковицу, (Морганиев узел), которая имеет семислойное строение (по типу корковых центров): 1 – слой нервных волокон,2 – слой обонятельных клубочков,3 - наружный сетевидный слой,4 – слой тел митральных клеток,5 – внутренний сетевидный слой,6 – зернистый слой,7 – эпителиальный слой (эпендимный). Рецепцию пахучих веществ осуществляют рецепторные клетки. Их периферические отростки снабжены булавовидными утолщениями, заканчивающимися пучком тонких обонятельных волосков (жгутиков, или ресничек), погруженными в слой слизи. Обонятельные волоски увеличивают общую поверхность обонятельных клеток в десятки раз. Первичное взаимодействие молекул пахучих веществ с рецепторными клетками включает несколько последовательных этапов: пахучее вещество по воздуху доставляется к поверхности обонятельного эпителия, растворяется в слое слизи и связывается с рецептивными участками на поверхности обонятельного эпителия, образуя комплексы с компонентами цитоплазматической мембраны клеток. При этом изменяется ионная проницаемость мембраны клеток и развивается рецепторный потенциал. Сигналы от рецепторных клеток по нервным волокнам поступают в головной мозг, где происходит формирование впечатления о характере запаха (качестве, силе), его узнавание и др. Обонятельные раздражители рефлекторно могут также изменять частоту дыхательных движений и пульса, кровяное давление. Для многих пахучих веществ определен порог восприятия (так называемый порог обоняния), т.е. минимальная концентрация вещества, способная вызвать реакцию обонятельного анализатора (порог узнавания, когда воспринимается качество запаха, обычно лежит несколько выше порога О. ). Пороги О. для многих веществ очень низки. Порог О. у человека значительно выше порога О. у животных (например, у собак порог О. к масляной кислоте составляет около 104 молекул в 1 мл, а у некоторых насекомых к половому феромону — около 103 молекул в 1 мл). В норме порог О. у человека претерпевает колебания в зависимости от времени суток и физиологического состояния. Длительное воздействие раздражителей на обонятельный анализатор может привести к развитию адаптации О. После раздражения обонятельного анализатора повышается порог О. к раздражающему веществу (прямая, или гомогенная, адаптация) и в меньшей степени к другим пахучим веществам (перекрестная, или гетерогенная, адаптация). 48. Каким параметром характеризуется быстрота затухания колебаний, и какие процессы в живой природе имеют колебательный характер
В настоящее время экспериментально изучено достаточно большое количество колебательных систем в биологии: периодические биохимические реакции, колебания в гликолизе, периодические процессы фотосинтеза, колебания численности видов и т. д. Во всех этих процессах некоторые характеризующие систему величины изменяются периодически в силу свойств самой системы без какого-либо периодического воздействия извне. Подобные системы относятся к классу автоколебательных.
Автоколебательными называются системы, в которых устанавливаются и поддерживаются незатухающие колебания за счет сил, зависящих от состояния самой системы, причем амплитуда этих колебаний определяется свойствами самой системы, а не начальными условиями. Существует понятие - декремент затухания, количественная характеристика быстроты затухания колебаний. Д. з. d равен натуральному логарифму отношения двух последующих максимальных отклонений х колеблющейся величины в одну и ту же сторону. Д. з. - величина, обратная числу колебаний, по истечении которых амплитуда убывает в е раз. Например, если d = 0,01, то амплитуда уменьшится в е раз после 100 колебаний. Д. з. характеризует число периодов, в течение которых происходит затухание колебаний, а не время такого затухания. Полное время затухания определяется отношением Т/d.
49. Особенности пространственной организации белков и нуклеиновых кислот. Модели фибрилляторных и глобулярных белков. Качественная структурная теории белка. Общие черты пространственных структур различных белков были установлены в работах Л.Полинга и Р.Кори: 1. Длины связей и величины валентных углов всех пептидых груп - одинаковы. 2. Все атомы пептидной группы расположены в одной плоскости и предпочтительной конфигурацией пептидной группы является транс-конфигурация 3. Полипептидная цепь полностью насыщена водородными связями 4. Двухгранные углы вращения вокруг связей N - Cа и Cа - С' отвечают минимумам торсионных потенциалов, а расстояния между всеми валентно не связанными атомами превышают суммы ван-дер-ваальсовых радиусов. 5. Конформационные состояния всех звеньев полипептидной цепи эквивалентны. Полинг и Кори, сформулировали гипотезу, согласно которой альфа-спираль и складчатая бэта-структура имеют фундаментальное значение в пространственной организации белковых молекул и что структуры фибриллярных, глобулярных белков и синтетических пептидов могут быть описаны с помощью небольшого числа канонических форм - некоторых структурных блоков. Общая структура свернутого белка исключительно компактна. Например, полностью вытянутая цепь панкреатического трипсинового ингибитора (58 остатков) имеет длину 21.1 нм, а максимальный габаритный размер свернутого белка равен около 2.9 нм. Карбоксипептидаза, состоящая из 307 аминокислотных остатков, в вытянутой форме имеет длину 111.4 нм, а в свернутой - 5.0 нм. Нуклеиновые кислоты - это длинные цепочки, состоящие из четырех многократно повторяющихся единиц (нуклеотидов). Их структуру можно представить следующим образом: Символ Ф обозначает фосфатную группу. Чередующиеся остатки сахара и фосфорной кислоты образуют сахарофосфатный остов молекулы, одинаковый у всех ДНК, а огромное их разнообразие обусловливается тем, что четыре азотистых основания могут располагаться вдоль цепи в самой разной последовательности. Сахаром в нуклеиновых кислотах является пентоза; четыре из пяти ее углеродных атомов вместе с одним атомом кислорода образуют кольцо. Атомы углерода пентозы обозначают номерами от 1ў до 5ў. В РНК сахар представлен рибозой, а в ДНК - дезоксирибозой, содержащей на один атом кислорода меньше. Поскольку фосфатные группы присоединены к сахару асимметрично, в положениях 3ў и 5ў, молекула нуклеиновой кислоты имеет определенное направление. Сложноэфирные связи между мономерными единицами нуклеиновых кислот чувствительны к гидролитическому расщеплению (ферментативному или химическому), которое приводит к высвобождению отдельных компонентов в виде небольших молекул. Азотистые основания – это плоские гетероциклические соединения. Они присоединены к пентозному кольцу по положению 1ў. Более крупные основания имеют два кольца и называются пуринами: это аденин (А) и гуанин (Г). Основания, меньшие по размерам, имеют одно кольцо и называются пиримидинами: это цитозин (Ц), тимин (Т) и урацил (У). В ДНК входят основания А, Г, Т и Ц, в РНК вместо Т присутствует У. Последний отличается от тимина тем, что у него отсутствует метильная группа (CH3). Урацил встречается в ДНК некоторых вирусов, где он выполняет ту же функцию, что и тимин. Фибриллярные белки - расположенные параллельно друг другу вытянутые полипептидные цепи, образующие длинные нити или слои. Существует четыре типа фибриллярных белков, выполняющих в животных организмах защитную или структурную роль: альфа-кератины , бэта-керотины , коллаген и эластин. Все эти белки не растворяются в воде при физиологических условиях. В глобулярных белках полипептидная цепь свернута в компактную глобулу. Белки этого класса имеют значительно более сложные конформации , чем фибриллярные белки. Некоторые глобулярные белки выполняют транспортные функции: вместе с током крови они переносят кислород, питательные вещества и неорганические ионы; к этому же классу белков принадлежат антитела , часть гормонов , а также компоненты мембран и рибосом .