
- •Теоретические основы электротехники
- •Введение
- •1.Общие сведения о дисциплине
- •Выписка из учебного плана специальности
- •2. Методическое обеспечение
- •Часть 1. Линейные электрические цепи т1. Физические законы в электротехнике
- •1.Электромагнитное поле
- •2. Электрический ток. 1-й закон Кирхгофа
- •3. Электрическое напряжение. 2-ой закон Кирхгофа
- •4. Физические процессы в электрической цепи
- •Т2. Теоремы и методы расчета сложных резистивных цепей
- •1. Основные определения
- •2. Метод преобразования (свертки) схемы
- •3. Метод законов Кирхгофа
- •4 . Метод контурных токов
- •5. Метод узловых потенциалов
- •6. Метод двух узлов
- •7. Принцип наложения. Метод наложения
- •8. Теорема о взаимности
- •9. Теорема о компенсации
- •10. Теорема о линейных отношениях
- •11. Теорема об эквивалентном генераторе
- •1.Топологические определения схемы
- •Уравнения Ома и Кирхгофа в матричной форме
- •3. Контурные уравнения в матричной форме
- •4. Узловые уравнения в матричной форме
- •5. Расчет сложной цепи методом контурных токов в матричной форме
- •6. Расчет сложной цепи методом узловых потенциалов в матричной форме
- •1. Переменный ток (напряжение) и характеризующие его величины
- •2. Среднее и действующее значения переменного тока и напряжения
- •3. Векторные диаграммы переменных токов и напряжений
- •4. Теоретические основы комплексного метода расчета цепей переменного тока
- •5. Мощность переменного тока
- •6. Переменные ток в однородных идеальных элементах
- •7. Электрическая цепь с последовательным соединением элементов r, l и c
- •8. Электрическая цепь с параллельным соединением элементов r, l и с
- •9. Активные и реактивные составляющие токов и напряжений
- •10. Передача энергии от активного двухполюсника (источника) к пассивному двухполюснику (приемнику)
- •11. Компенсация реактивной мощности приемников энергии
- •12. Методы расчета цепей переменного тока.
- •Т5. Резонанс в электрических цепях
- •1. Определение резонанса
- •2. Резонанс напряжений
- •3. Резонанс токов
- •4. Резонанс в сложных схемах
- •Т6. Магнитносвязанные электрические цепи
- •1.Общие определения
- •2. Последовательное соединение магнитносвязанных катушек
- •3. Параллельное соединение магнитносвязанных катушек
- •4. Линейный (без сердечника) трансформатор
- •Т6. Исследование режимов электрических цепей методом векторных и круговых диаграмм.
- •Уравнение дуги окружности в комплексной форме.
- •2. Круговая диаграмма тока и напряжений для элементов последовательной цепи
- •Круговая диаграмма для произвольного тока и напряжения в сложной цепи
- •Т7. Электрические цепи трехфазного тока.
- •1. Трехфазная система
- •2. Способы соединения обмоток трехфазных генераторов
- •5. Способы соединения фаз трехфазных приемников.
- •7. Мощность трехфазной цепи и способы ее измерения
- •8. Вращающееся магнитное поле
- •9. Теоретические основы метода симметричных составляющих
- •Расчет режима симметричной трехфазной нагрузки при несимметричном напряжении
- •Разложим несимметричную систему напряжений ua, ub, uc на симметричные составляющие прямой, обратной и нулевой последовательностей:
- •11. Расчет токов коротких замыканий в энергосистеме методом симметричных составляющих.
- •12. Фильтры симметричных составляющих
- •Т8. Электрические цепи периодического несинусоидального тока
- •1. Представление периодических несинусоидальных функций u(t), I(t) гармоническими рядами Фурье
- •2. Аппроксимация несинусоидальных функций u(t) I(t)
- •3. Разложение периодических несинусоидальных функций u(t), I(t) в гармонический ряд Фурье
- •3. Виды симметрии периодических функций
- •4. Действующие значения несинусоидальных напряжений и токов
- •5. Мощность в цепи несинусоидального тока
- •6. Коэффициенты, характеризующие несинусоидальные функции u(t), I(t)
- •7. Расчет электрических цепей несинусоидального тока гармоническим методом
- •8. Расчет электрических цепей несинусоидального тока численным методом
- •8. Измерение действующих значений несинусоидальных напряжений и токов
- •9. Высшие гармоники в трехфазных цепях
- •Расчет схемы для 1-й гармоники (прямая последовательность)
- •Расчет схемы для 3-й гармоники (нулевая последовательность)
- •Действующие значения фазного и линейного напряжений
- •Т10. Четырехполюсники и фильтры
- •Уравнения четырехполюсника
- •2. Схемы замещения четырехполюсника
- •3. Определение коэффициентов четырехполюсника
- •4. Способы соединения четырехполюсников
- •5. Характеристические параметры симметричного четырехполюсника
- •6. Основные понятия и определения электрических фильтров
- •Коэффициентом передачи напряжения фильтра называется отношение комплексных выходного напряжения ко входному:
- •8. Фильтры нижних частот типа к
- •9. Фильтры верхних частот типа к.
- •10. Полосовые фильтры
- •11. Заграждающие фильтры
- •Т11. Электрические цепи с распределенными параметрами
- •Общие определения
- •2. Дифференциальные уравнения лини с распределенными параметрами
- •3. Решение уравнений линии с распределенными параметрами в установившемся синусоидальном режиме
- •4. Волновые процессы в линии с распределенными параметрами.
- •Характер распространения отраженной волны показан на рис. 156.
- •Действительное значение напряжения в любой точке лини х’ в любой момент времени t’ будет равно сумме значений напряжений падающей и отраженной волн:
- •5. Линия с распределенными параметрами в различных режимах
- •6. Линия с распределенными параметрами без искажений
- •7. Линия с распределенными параметрами без потерь
- •Графические диаграммы названных функций показаны на рис. 2.
6. Метод двух узлов
Метод двух узлов является частным случаем метода узловых потенциалов при числе узлов в схеме n = 2. Пусть требуется выполнить расчет режима в заданной схеме (рис. 20).
Принимаем V0 = 0, тогда уравнение для узла 1 по методу узловых потенциалов будет иметь вид: V1G11 = J11, откуда следует непосредственное определение напряжения между узлами схемы:
уравнение
метода двух узлов.
Применительно к схеме рис. 20 данное уравнение примет конкретную форму:
.
Токи в ветвях схемы определяются из потенциальных уравнений:
7. Принцип наложения. Метод наложения
Принцип (теорема) наложения гласит, что ток в любой ветви (напряжение на любом элементе) сложной схемы, содержащей несколько источников, равен алгебраической сумме частичных токов (напряжений), возникающих в этой ветви (на этом элементе) от независимого действия каждого источника в отдельности. Для упрощения доказательства теоремы выберем одну из наружных ветвей сложной схемы за номером 1, в которой действительный ток равен контурному: I1 = Ik1. Составим для сложной схемы систему контурных уравнений [Rk]∙[Ik] = [Ek] и решим ее относительно тока I1 = Ik1 методом определителей (Крамера):
Здесь G11 – входная проводимость ветви 1, G12, G13, …, G1n– взаимные проводимости между 1-й и остальными ветвями, I11 = E1G11 – частичный ток в ветви 1 от источника ЭДС E1, I12 = E2G12, …, I1n = EnG1n – частичные токи в ветви 1 от источников ЭДС E2,…, En.
Принцип наложения выполняется только для тех физических величин, которые описываются линейными алгебраическими уравнениями, например, для токов и напряжений в линейных цепях. Принцип наложения не выполняется для мощности, которая с током связана нелинейным уравнением P=I2R.
Принцип наложения лежит в основе метода расчета сложных цепей, получившего название метода наложения. Сущность этого метода состоит в том, что в сложной схеме с несколькими источниками последовательно рассчитываются частичные токи от каждого источника в отдельности. Расчет частичных токов выполняют, как правило, методом преобразования схемы. Действительные токи определяются путем алгебраического сложения частичных токов с учетом их направлений.
П
E1
E2
На рис. 22а представлена схема цепи для определения частичных токов от источника ЭДС Е1, а на рис. 22б от источника ЭДС Е2.
Частичные токи в схеме рис. 22а от E1:
Ом;
I11=
E1/R11=12/3
= 4A; I21=
I31=
2А.
Частичные токи в схеме рис. 22б от E2:
Ом;
I22
= E2/R22
= 9/3
= 3A; I12=
I32 =
1,5А.
Действительные токи как алгебраические суммы частичных токов:
I1 = I11 I12 = 4 – 1,5 = 2,5 A
I2 = I21 + I22 = 2 + 3 =1 A
I3 = I31+ I32 = 2 + 1,5 =3,5 A