
- •1. Естественно-научная картина мира и научные революции, понятие «парадигма».
- •2. Особенности естественно-научной и гуманитарной культуры, роль технической культуры.
- •3. Взаимоотношения культуры, науки и религии, степень их взаимовлияния.
- •4. Основные особенности науки и ее структура, роль фундаментальной и прикладной науки.
- •5. Задачи философии науки и основные этапы ее развития.
- •6. Законы конта в позитивизме, их значение для науки.
- •7. Роль эмпирического и рационального видов знания в науке, их взаимоотношения в процессе познания.
- •8. Логический позитивизм Рассела, принцип верификации в накучном познании.
- •9. Критический рационализм поппера, принцип фальсифицируемости в научном познании.
- •10. Эволюция научных знаний при смене научных теорий.
- •11. Модель «трех миров» поппера.
- •12. Структура «научно-исследовательской программы» Лакатоса и роль ее компонентов в процессе познания.
- •13. Основные принципы научности, выработанные философией науки для характеристики научного метода.
- •5. Принцип инвариантности (универсальности).
- •14. Основные общенаучные методы, используемые в научном познании, их смысловое знание.
- •15. Понятие «ситема» и основные общесистемные свойста.
- •16. Системный подход и системный анализ, их преимущества.
- •17. Основные этапы развития античного научного знания, концепция геоцентризма.
- •18. Научный вклад коперника, кеплера, галилея и концепция гелиоцентризма.
- •19. Классическая механика Ньютона, закон всемирного тяготения и принцип дальнодействия.
- •20. НАучный вклад эрстеда, фарадея, максвелла и концепция электромагнитного поля, его спектр.
- •21. Истоки и следствия специальной теории относительности, взаимосвязь энергии и массы.
- •22. Модель «светового конуса» минковского, взаимосвязь пространства и времени.
- •23. Основные следствия общей теории относительности эйнштейна, принцип эквивалентности.
- •24. Варианты эволюции вселенной в модели фридмана, концепция «большого взрыва», открытие хаббла.
- •25. Основные типы галактик, этапы звездной эволюции, виды звездных объектов.
- •26. Концепции образования солнечной системы, планеты и другие находящиеся в ней объекты.
- •27. Внутренне строение Земли, состав ее географической оболочки.
- •28. Виды фундаментальных физических взаимодействий, их свойства и частицы переноса, принцип близкодействия.
- •29. Основные структурные уровни познания окружающего физико-биологического мира, отличительные свойства.
- •30. Основные особенности квантовой механики микромира.
- •31. Энергетическая модель атома и постулаты н.Бора.
- •32. Строение атомного ядра и особенности основных типов ядерных реакций.
- •Ядерные реакции в природе (внутри звезд - сжигание водорода, образование гелия и т. Д.). Ядерное оружие.
- •33. Структура электронной оболочки атома, квантовые числа ипринцип в. Паули в микромире.
- •34. Корпускулярно-волновой дуализм в микромире и принцип дополнительности н. Бора.
- •35. Принцип неопределенности в. Гейнзберга в микрмире и его значение.
- •36. Основные группы элементраных частиц в микромире, их общая классификация.
- •37. Три начала термодинамики, понятие энтропии и гипотеза «тепловой смерти» вселенной.
- •38. Понятие симметрии, ее основные виды и примеры проявления в природе.
- •39. Фазовые состояния вещества, энтропия и симметрия в процессах плавления и кристализации, роль времени.
- •40. Синергетика и основные свойства самоорганизующихя природных систем, роль «точек бифуркации».
- •41. Биологические системы и основные свойства, отличающие их от физических систем.
- •42. Основные существующие концепции появления жизни на земле, их особенности.
- •43. Необходимые условия формирования жизни, степень ее распростроненности во вселенной
- •44. Антропный принцип в слабой и сильной формулировках, его значение
- •45. Принцип м. Эйгена и концепция а. Опарина
- •46. Принципы теории биологической эволюции ч.Дарвина.
- •47. Роль изменчивости и наследственности в биологичесих системах, как проявление различных видов симметрии.
- •48. Понятие генетического кода, особенности строения днк и принцип белкового кодирования г. Гамова.
- •49. Виды наследственной изменчивости организмов ,смысл и перспективы генной инженерии и клонирования.
- •4. Клеточные структуры
- •7. Биологические виды
- •51. Различные понятия ноосферы, ее влияние на экологию планеты, проблемы биоэтики.
- •52. Основные этапы антропогенеза, взаимосвязь процесса сапиентации с условиями окружающей среды.
- •3. Кроманьонцы.
- •53. Понятие информации, структура каналов ее предачи и способы повышения их надежности.
- •1. Канал обратной связи
- •2. Передача на нескольких частотах
- •54. Теоремы к. Шеннона и их значение для эффективности нейронной сети, структура нейрона и рефлекторная дуга.
- •55. Основные виды управления, значение различных видов обратной связи для устойчивости биологических систем.
- •56. Кибернетика и направления ее развития, моделирование биологических систем, проблема «черного ящика».
38. Понятие симметрии, ее основные виды и примеры проявления в природе.
Симметрия – однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований. Это признак полноты и совершенства.
Четыре категории симметрии:
- симметрия - однородность, пропорциональность, гармония, инвариантность структуры материального объекта относительно его преобразований;
- асимметрия – это несимметрия, т. е. такое состояние, когда симметрия отсутствует;
- дисимметрия – внутренняя, или расстроенная, симметрия, т. е. отсутствие у объекта некоторых элементов симметрии;
- антисимметрия – противоположная симметрия, связанная с переменой знака фигуры.
Виды ситмметрий:
1. В конформной (круговой) симметрии главным преобразованием является инверсия относительно сферы. Главная особенность конформного преобразования состоит в том, что оно всегда сохраняет углы фигуры и сферу и всегда переходит в сферу другого радиуса.
Известно, что кристаллы какого-либо вещества могут иметь самый разный вид, но углы между гранями всегда постоянны.
2. Зеркальная симметрия. Легко установить, что каждая симметричная плоская фигура может быть с помощью зеркала совмещена сама с собой.
В то время как симметричные фигуры полностью соответствуют своему отражению, несимметричные отличны от него: из спирали, закручивающейся справа налево, в зеркале получится спираль, закручивающаяся слева направо.
В архитектуре оси симметрии используются как средства выражения архитектурного замысла. В технике оси симметрии наиболее четко обозначаются там, где требуется оценить отклонение от нулевого положения, например на руле грузовика или на штурвале корабля.
Симметрия проявляется в многообразных структурах и явлениях неорганического мира и живой природы. В мир неживой природы очарование симметрии вносят кристаллы. Каждая снежинка- это маленький кристалл замерзшей воды. Форма снежинок может быть очень разнообразной, но все они обладают симметрией - поворотной симметрией 6-го порядка и, кроме того, зеркальной симметрией.
3. Винтовая симметрия. В пространстве существуют тела, обладающие винтовой симметрией, т.е. совмещаемые со своим первоначальным положением после поворота на какой-либо угол вокруг оси, дополненного сдвигом вдоль той же оси. Если данный угол поделить на 360 градусов - рациональное число, о поворотная ось оказывается также осью переноса.
Симметрия в механике.
Однородность пространства.
Пространство вблизи земной поверхности физически неоднородно: все тела стремятся занять самые низкие положения, поближе к Земле. Столь же неоднородно пространство вблизи Солнца. Но вся Солнечная система как целое движется прямолинейно, по крайней мере, в течение миллионов лет отклонений от прямолинейного движения не было. Пространство, в котором она движется, свободно от тяготеющих к нему тел и здесь можно говорить о его однородности. Из второго закона Ньютона следует прямолинейность и равномерность движения центра инерции системы тел в однородном пространстве. Никакие внутренние силы не нарушают однородности пространства по отношению к системе как к целому.
Изотропия пространства – еще один вид симметрии – относительно поворотов координатных систем. В физике это проявляется в том, что вокруг любой прямой можно повернуть координатную систему на любой угол, и повернутая система будет во всех отношениях равноценна первоначальной.
Однородность времени.
Пространство имеет группу симметрии относительно произвольных переносов по трем взаимно перпендикулярным направлениям. Симметрия же времени напоминает симметрию прямой относительно переносов. Время однородно, т.е. все его моменты равноценны, по крайней мере по отношению к чисто механическим явлениям.
Симметрия в живой природе.
Если рассматривать царство живого, то любому его представителю, от простейшей водоросли до эвкалипта, от крошечного жучка до кита, от червяка до человека, можно приписать одну из групп симметрии (точечных или пространственных), выведенных для материальных фигур.
Живой организм не имеет кристаллического строения, однако, упорядоченные структуры в ней представлены очень широко. Если они жидкие, то их называют жидкими кристаллами. Это и желчь, и кровь, и хрусталик глаза, и серое вещество мозга
.