
- •1. Естественно-научная картина мира и научные революции, понятие «парадигма».
- •2. Особенности естественно-научной и гуманитарной культуры, роль технической культуры.
- •3. Взаимоотношения культуры, науки и религии, степень их взаимовлияния.
- •4. Основные особенности науки и ее структура, роль фундаментальной и прикладной науки.
- •5. Задачи философии науки и основные этапы ее развития.
- •6. Законы конта в позитивизме, их значение для науки.
- •7. Роль эмпирического и рационального видов знания в науке, их взаимоотношения в процессе познания.
- •8. Логический позитивизм Рассела, принцип верификации в накучном познании.
- •9. Критический рационализм поппера, принцип фальсифицируемости в научном познании.
- •10. Эволюция научных знаний при смене научных теорий.
- •11. Модель «трех миров» поппера.
- •12. Структура «научно-исследовательской программы» Лакатоса и роль ее компонентов в процессе познания.
- •13. Основные принципы научности, выработанные философией науки для характеристики научного метода.
- •5. Принцип инвариантности (универсальности).
- •14. Основные общенаучные методы, используемые в научном познании, их смысловое знание.
- •15. Понятие «ситема» и основные общесистемные свойста.
- •16. Системный подход и системный анализ, их преимущества.
- •17. Основные этапы развития античного научного знания, концепция геоцентризма.
- •18. Научный вклад коперника, кеплера, галилея и концепция гелиоцентризма.
- •19. Классическая механика Ньютона, закон всемирного тяготения и принцип дальнодействия.
- •20. НАучный вклад эрстеда, фарадея, максвелла и концепция электромагнитного поля, его спектр.
- •21. Истоки и следствия специальной теории относительности, взаимосвязь энергии и массы.
- •22. Модель «светового конуса» минковского, взаимосвязь пространства и времени.
- •23. Основные следствия общей теории относительности эйнштейна, принцип эквивалентности.
- •24. Варианты эволюции вселенной в модели фридмана, концепция «большого взрыва», открытие хаббла.
- •25. Основные типы галактик, этапы звездной эволюции, виды звездных объектов.
- •26. Концепции образования солнечной системы, планеты и другие находящиеся в ней объекты.
- •27. Внутренне строение Земли, состав ее географической оболочки.
- •28. Виды фундаментальных физических взаимодействий, их свойства и частицы переноса, принцип близкодействия.
- •29. Основные структурные уровни познания окружающего физико-биологического мира, отличительные свойства.
- •30. Основные особенности квантовой механики микромира.
- •31. Энергетическая модель атома и постулаты н.Бора.
- •32. Строение атомного ядра и особенности основных типов ядерных реакций.
- •Ядерные реакции в природе (внутри звезд - сжигание водорода, образование гелия и т. Д.). Ядерное оружие.
- •33. Структура электронной оболочки атома, квантовые числа ипринцип в. Паули в микромире.
- •34. Корпускулярно-волновой дуализм в микромире и принцип дополнительности н. Бора.
- •35. Принцип неопределенности в. Гейнзберга в микрмире и его значение.
- •36. Основные группы элементраных частиц в микромире, их общая классификация.
- •37. Три начала термодинамики, понятие энтропии и гипотеза «тепловой смерти» вселенной.
- •38. Понятие симметрии, ее основные виды и примеры проявления в природе.
- •39. Фазовые состояния вещества, энтропия и симметрия в процессах плавления и кристализации, роль времени.
- •40. Синергетика и основные свойства самоорганизующихя природных систем, роль «точек бифуркации».
- •41. Биологические системы и основные свойства, отличающие их от физических систем.
- •42. Основные существующие концепции появления жизни на земле, их особенности.
- •43. Необходимые условия формирования жизни, степень ее распростроненности во вселенной
- •44. Антропный принцип в слабой и сильной формулировках, его значение
- •45. Принцип м. Эйгена и концепция а. Опарина
- •46. Принципы теории биологической эволюции ч.Дарвина.
- •47. Роль изменчивости и наследственности в биологичесих системах, как проявление различных видов симметрии.
- •48. Понятие генетического кода, особенности строения днк и принцип белкового кодирования г. Гамова.
- •49. Виды наследственной изменчивости организмов ,смысл и перспективы генной инженерии и клонирования.
- •4. Клеточные структуры
- •7. Биологические виды
- •51. Различные понятия ноосферы, ее влияние на экологию планеты, проблемы биоэтики.
- •52. Основные этапы антропогенеза, взаимосвязь процесса сапиентации с условиями окружающей среды.
- •3. Кроманьонцы.
- •53. Понятие информации, структура каналов ее предачи и способы повышения их надежности.
- •1. Канал обратной связи
- •2. Передача на нескольких частотах
- •54. Теоремы к. Шеннона и их значение для эффективности нейронной сети, структура нейрона и рефлекторная дуга.
- •55. Основные виды управления, значение различных видов обратной связи для устойчивости биологических систем.
- •56. Кибернетика и направления ее развития, моделирование биологических систем, проблема «черного ящика».
29. Основные структурные уровни познания окружающего физико-биологического мира, отличительные свойства.
Как живая, так и неживая сферы материи включают в себя ряд взаимосвязанных структурных уровней. Принято разделать следующие уровни: микро-, макро- и мегамир. Разделение на 3 уровня позволяет лучше ориентироваться в пространстве. Микромир – область предельно малых, непосредственно не наблюдаемых, материальных микрообъектов, пространственная размерность которых исчисляется в диапазоне от 10-8 до 10-16 см, а время жизни от бесконечности до 10-24 секунды. Сюда относятся фундаментальные и элементные частицы., ядра, атомы, молекулы.
Макромир – мир материальных объектов, соизмеримых по свои масштабам с человеком и его физическими параметрами. На этом уровне пространственные величины выражаются в миллиметрах, сантиметрах, метрах, километрах, а время – сек, мин, часах, днях, годах. В практической действительности макромир представлен макромолекулами, веществами в различных агрегатных состояниях, живыми организмами, человеком, те макротелами.
Мегамир – сфера огромных космических масштабов и скоростей, расстояние в кот измеряется астрономическими единицами, световыми годами, а время существования космических объектов – миллионами и миллиардами лет. К этому уровню материи относятся наиболее крупные материальные объекты – звезды, галактики и их скопления.
30. Основные особенности квантовой механики микромира.
Квантовая механика – теория, кот устанавливает способ описания и законы движения микрочастиц и их систем, а так же связь величин, характеризующих частицы и системы, с физическими величинами, измеряемыми на опыте. Квантовая механика описывает законы движения микрочастиц (элементарных частиц, атомов, молекул). Применяется для объяснения многих макроскопических явлений.Квантовая механика делится на нерелятивистскую, справедливую в случае малых скоростей, и релятивистскую. Нерелятивисткая квантовая механика - это законченная и логически непротиворечивая фундаментальная физическая теория. Релятивистская квантовая механика не является в такой степени завершенной и свободной от противоречий теорией. Соотношение между классической и квантовой механикой определяется существованием универсальной мировой постоянной - постоянной Планка. Планк предположил, что свет испускается не непрерывно, а определенными дискретными порциями энергии - квантами. Для классической механики характерно описание частиц путем задания их положения и скоростей и зависимости этих величин от времени. В квантовой механике одинаковые частицы в одинаковых условиях могут вести себя по-разному. На базе квантовой механики невозможно описать положение и скорость элементарной частицы или предсказать ее будущий путь. Волны вероятности говорят нам о вероятности встретить электрон в том или ином месте.
31. Энергетическая модель атома и постулаты н.Бора.
Сегодня общепринятой является модель атома, являющаяся развитием планетарной модели. Считается, что ядро атома состоит из положительно заряженных протонов и не имеющих заряда нейтронов и окружено отрицательно заряженными электронами. Однако представления квантовой механики не позволяют считать, что электроны движутся вокруг ядра по сколько-нибудь определённым траекториям (неопределённость координаты электрона в атоме может быть сравнима с размерами самого атома).
Химические свойства атомов определяются конфигурацией электронной оболочки и описываются квантовой механикой. Позиция атома в таблице Менделеева определяется количеством протонов, в то время как количество нейтронов на химические свойства практически не влияет; при этом нейтронов в ядре, как правило, больше, чем протонов (см. статью об атомном ядре). Количество электронов в нейтральном состоянии по определению соответствует количеству протонов. Основная масса атома сосредоточена в ядре, в то время как массовая доля электронов в общей массе атома незначительна (несколько сотых процента массы ядра).
Массу атома принято измерять в атомных единицах массы, равных 1/12 от массы атома изотопа углерода 12C.
Постулаты Бора:
1. В спокойном состоянии атом представляет собой стационарную систему, имеющую электронную оболочку.
2. Электронная оболочка разбита на электронные уровни, причем энергия ближайшего к ядру уровня является наименьшей.
3. Переход электрона из одного энергетического уровня в другой сопровождается либо потерей, либо приобретением мельчайшей порции энергии - кванта.
Квантовые постулаты Бора были лишь первым шагом в создании квантовой теории атома. Поэтому пришлось воспользоваться следующим приемом: сначала задача решалась при помощи классической механики (заведомо неприменимой полностью к внутриатомным движениям), а затем из всего непрерывного множества состояний движения, к которым приводит классическая механика, на основе квантовых постулатов отбирались квантовые состояния. Несмотря на все несовершенство этого метода, он привел к большим успехам — позволил объяснить сложные закономерности в атомных и молекулярных спектрах, осмыслить природу химических взаимодействий и др. Такой подход, по сути, является частным случаем общего принципа, играющего важную роль в современной теоретической физике — принципа соответствия, который гласит, что всякая неклассическая теория в соответствующем предельном случае переходит в классическую.
Важным достижением Бора и других исследователей было развитие представления о строении многоэлектронных атомов. Предпринятые шаги в развитии теории строения более сложных (чем водород) атомов и объяснении структуры их спектров принесли некоторые успехи. Однако они не означали, что эту теорию можно считать завершенной. Во-первых, постулаты Бора и многие принципы его теории имели характер непонятных, ни откуда не следуемых утверждений, которые еще должны получить свое обоснование. Во-вторых, в некоторых даже довольно простых случаях применение данной теории встречало непреодолимые трудности; например, попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Физики ясно понимали неудовлетворительность боровской теории атома.