
- •1. Предмет и метод аналитической геометрии. Начальные понятия геометрии.
- •2. Направленные отрезки на оси. Величина направленного отрезка. Линейные операции над направленными отрезками.
- •8. Прямая на плоскости: уравнение прямой в отрезках.
- •9.Общее уравнение прямой и его исследование
- •11. Определение угла между двумя прямыми на плоскости. Угол между прямыми на плоскости
- •Уравнение прямой, проходящей через данную точку перпендикулярно данной прямой
- •12. Условие параллельности прямых на плоскости, заданных уравнениями с угловым коэффициентом.
- •13. Условие параллельности прямых на плоскости, заданных общими уравнениями.
- •21. Эквивалентность систем линейных уравнений. Элементарные преобразования систем, приводящие к эквивалентным системам линейных уравнений.
- •22. Метод Гаусса решения систем линейных уравнений (метод исключения переменных). Основные шаги, прямой и обратный ход метода.
- •Формулы прямого хода
- •Обратный ход
- •23. Три варианта завершения прямого хода метода Гаусса: а) система несовместная, б) система совместная и неопределенная; в) система совместная и определенная.
- •24. Общее и частное решение системы линейных уравнений. Привести пример. Фундаментальная система решений.
- •25. Матрицы, операции над ними и их свойства: сложение матриц, умножение матрицы на число (произведение матрицы на число), транспонирование матриц.
- •26. Произведение матриц: умножение матрицы строки на матрицу-столбец; умножение матрицы на столбец; умножение строки на матрицу; умножение матриц.
- •27. Условия существования произведения матриц. Свойства операции умножения матриц.
- •Возведение матрицы в степень, условие существования степени матрицы.
- •Понятие определителя матрицы. Формулы для вычисления определителей 2-го и третьего порядков. Свойства определителя.
- •Формулы Крамера для решения систем линейных уравнений. Исследование систем с определителем, равным нулю.
- •Миноры и алгебраические дополнения, их связь с определителем матрицы. Вычисление определителей методом разложения по строке или столбцу.
- •32. Обратная матрица: определение, условие существования. Присоединенная матрица.
- •33. Алгоритм вычисления обратной матрицы.
- •34. Решение систем линейных уравнений с использованием обратной матрицы.
- •35. Ранг матрицы и его свойства. Алгоритм вычисления ранга матрицы.
- •36. Исследование систем линейных уравнений с использованием теоремы Кронекера-Капелли.
- •37. Базисное решение. Однородные и неоднородные системы линейных уравнений.
- •38. Векторы на плоскости и в пространстве: определение, параллельный перенос, равенство векторов. Классы равных векторов. Коллинеарные и компланарные векторы.
- •39. Операции над векторами и их свойства
- •40. Направляющие косинусы Формула вычисления направляющих косинусов вектора для плоских задач
- •Формула вычисления направляющих косинусов вектора для пространственных задач
- •41. Координаты вектора. Декартова система координат в пространстве. Радиус-векторы: взаимнооднозначное соответствие между точками и направленными отрезками. Связь координат коллинеарных векторов.
- •42. Линейно зависимые системы векторов и их свойства.
- •43. Линейно независимые системы векторов и их свойства.
- •44.Ранг и базис системы векторов. Разложение вектора по базису.
- •46. Линейная зависимость и системы линейных уравнений. Связь ранга матрицы с базисом системы векторов.
- •47. Общее уравнение кривой второго порядка. Определение вида кривой второго порядка по коэффициентам ее уравнения.
- •Определение окружности. Каноническое уравнение окружности. Приведения общего уравнения окружности к каноническому.
- •Определение эллипса. Каноническое уравнение эллипса. Приведение общего уравнения эллипса к каноническому.
- •Координаты фокусов эллипса и его эксцентриситет.
- •51. Гипербола: определение. Общее и каноническое уравнения гиперболы. Координаты фокусов гиперболы и уравнения его асимптот.
- •Определение параболы. Каноническое уравнение параболы. Приведение общего уравнения параболы к каноническому.
- •53. Координаты вершины и фокуса параболы. Уравнение директрисы параболы.
- •54. Скалярное произведение векторов и его свойства.
- •55. Выражение скалярного произведения в декартовых координатах. Необходимое и достаточное условие ортогональности векторов. Нормальный вектор прямой (на плоскости) и плоскости (в пространстве).
- •56. Векторное произведение векторов и его свойства.
- •57. Смешанной произведение векторов и его свойство.
- •58. Общее уравнение плоскости в пространстве. Уравнение плоскости в отрезках. Общее уравнение плоскости в пространстве
- •59. Условия параллельности и перпендикулярности двух плоскостей в пространстве.
- •60. Общие уравнения прямой в пространстве. Канонические уравнения прямой в пространстве. Уравнения прямой в пространстве, проходящей через две точки.
- •44 Параметрические уравнения прямой
- •45 Уравнение прямой в пространстве, проходящее через две различные данные точки.
- •61. Условия параллельности и перпендикулярности двух прямых в пространстве.
- •62. Условия параллельности и перпендикулярности прямой и плоскости в пространстве.
13. Условие параллельности прямых на плоскости, заданных общими уравнениями.
Уравнение
Ах+Ву+С=0
(где А, В, Смогут иметь любые значения, лишь бы коэффициентыА, Вне были нулями оба сразу) представляетпрямую линию. Всякую прямую можно представить уравнением этого вида. Поэтому его называютобщим уравнением прямой.
Если А=0, то есть уравнение не содержитх, то оно представляет прямую,параллельную оси ОХ.
Если В=0, то есть уравнение не содержиту, то оно представляет прямую,параллельную оси ОY.
Когла Вне равно нулю, то общее уравнение прямой можноразрешить относительно ординаты у, тогда оно преобразуется к виду
y=ax+b
(где a=-A/B; b=-C/B).
Аналогично, при Аотличным от нуля общее уравнение прямой можно разрешить относительнох.
Если С=0, то есть общее уравнение прямой не содержит свободного члена, то оно представляет прямую, проходящую через начало координат
14. Условие перпендикулярности прямых на плоскости, заданных уравнениями с угловым коэффициентом.
15. Условие перпендикулярности прямых на плоскости, заданных общими уравнениями.
16. Исследование взаимного расположения пар прямых на плоскости, заданных общими уравнениями.
17. Нахождение координат точки пересечения прямых на плоскости.
-
Расстояние от данной точки до данной прямой на плоскости.
С
=>
-
Линейное уравнение, определение решения линейного уравнения. Равносильность линейных уравнений. Противоречивые и тривиальные уравнения. Общий вид решения уравнения.
Линейное уравнение с одной переменной x – это уравнение вида a·x+b=0, где a и b – некоторые числа, называемые коэффициентами линейного уравнения.
определение решения линейного уравнения: перенос слагаемого из одной части уравнения в другую с противоположным знаком, а также умножение или деление обе частей уравнения на одно и то же отличное от нуля число.
два уравнения называют равносильными, если они имеют одинаковые корни или если оба уравнения не имеют корней.
модель — система уравнений и неравенств — противоречива, что нельзя подобрать такие числовые значения неизвестных, при которых выполнялись бы одновременно все уравнения и неравенства. Тривиальное уравнение имеет нулевое решение.
-
Системы линейных уравнений: определение решения системы линейных уравнений. Свойства систем уравнений: совместность, несовместность, определенность, неопределенность. Аналогия с исследованием взаимного расположения двух прямых на плоскости.
Решением системы линейных алгебраических уравнений называют набор значений неизвестных переменных, обращающий все уравнения системы в тождества. 1) Пусть нам требуется решить систему линейных алгебраических уравнений, в которой число уравнений равно числу неизвестных переменных и определитель основной матрицы системы отличен от нуля.
2)
Суть метода Гаусса состоит в последовательном исключении неизвестных переменных: сначала исключается x1 из всех уравнений системы, начиная со второго, далее исключается x2 из всех уравнений, начиная с третьего, и так далее, пока в последнем уравнении останется только неизвестная переменная xn. Такой процесс преобразования уравнений системы для последовательного исключения неизвестных переменных называется прямым ходом метода Гаусса. После завершения прямого хода метода Гаусса из последнего уравнения находится xn, с помощью этого значения из предпоследнего уравнения вычисляется xn-1, и так далее, из первого уравнения находится x1. Процесс вычисления неизвестных переменных при движении от последнего уравнения системы к первому называется обратным ходом метода Гаусса.
Свойства систем уравнений: совместность, несовместность, определенность, неопределенность.
Если система уравнений имеет хотя бы одно решение, то она называется совместной. Если система уравнений решений не имеет, то она называется несовместной. Если СЛАУ имеет единственное решение, то ее называют определенной; если решений больше одного, то – неопределенной.
Аналогия с исследованием взаимного расположения двух прямых на плоскости.
Нахождение координат точки пересечения двух прямых. Координаты должны одновременно удовлетворять уравнениям обеих прямых, т.е. системе.