
- •Textbook Series
- •Contents
- •1 Overview and Definitions
- •Overview
- •General Definitions
- •Glossary
- •List of Symbols
- •Greek Symbols
- •Others
- •Self-assessment Questions
- •Answers
- •2 The Atmosphere
- •Introduction
- •The Physical Properties of Air
- •Static Pressure
- •Temperature
- •Air Density
- •International Standard Atmosphere (ISA)
- •Dynamic Pressure
- •Key Facts
- •Measuring Dynamic Pressure
- •Relationships between Airspeeds
- •Airspeed
- •Errors and Corrections
- •V Speeds
- •Summary
- •Questions
- •Answers
- •3 Basic Aerodynamic Theory
- •The Principle of Continuity
- •Bernoulli’s Theorem
- •Streamlines and the Streamtube
- •Summary
- •Questions
- •Answers
- •4 Subsonic Airflow
- •Aerofoil Terminology
- •Basics about Airflow
- •Two Dimensional Airflow
- •Summary
- •Questions
- •Answers
- •5 Lift
- •Aerodynamic Force Coefficient
- •The Basic Lift Equation
- •Review:
- •The Lift Curve
- •Interpretation of the Lift Curve
- •Density Altitude
- •Aerofoil Section Lift Characteristics
- •Introduction to Drag Characteristics
- •Lift/Drag Ratio
- •Effect of Aircraft Weight on Minimum Flight Speed
- •Condition of the Surface
- •Flight at High Lift Conditions
- •Three Dimensional Airflow
- •Wing Terminology
- •Wing Tip Vortices
- •Wake Turbulence: (Ref: AIC P 072/2010)
- •Ground Effect
- •Conclusion
- •Summary
- •Answers from page 77
- •Answers from page 78
- •Questions
- •Answers
- •6 Drag
- •Introduction
- •Parasite Drag
- •Induced Drag
- •Methods of Reducing Induced Drag
- •Effect of Lift on Parasite Drag
- •Aeroplane Total Drag
- •The Effect of Aircraft Gross Weight on Total Drag
- •The Effect of Altitude on Total Drag
- •The Effect of Configuration on Total Drag
- •Speed Stability
- •Power Required (Introduction)
- •Summary
- •Questions
- •Annex C
- •Answers
- •7 Stalling
- •Introduction
- •Cause of the Stall
- •The Lift Curve
- •Stall Recovery
- •Aircraft Behaviour Close to the Stall
- •Use of Flight Controls Close to the Stall
- •Stall Recognition
- •Stall Speed
- •Stall Warning
- •Artificial Stall Warning Devices
- •Basic Stall Requirements (EASA and FAR)
- •Wing Design Characteristics
- •The Effect of Aerofoil Section
- •The Effect of Wing Planform
- •Key Facts 1
- •Super Stall (Deep Stall)
- •Factors that Affect Stall Speed
- •1g Stall Speed
- •Effect of Weight Change on Stall Speed
- •Composition and Resolution of Forces
- •Using Trigonometry to Resolve Forces
- •Lift Increase in a Level Turn
- •Effect of Load Factor on Stall Speed
- •Effect of High Lift Devices on Stall Speed
- •Effect of CG Position on Stall Speed
- •Effect of Landing Gear on the Stall Speed
- •Effect of Engine Power on Stall Speed
- •Effect of Mach Number (Compressibility) on Stall Speed
- •Effect of Wing Contamination on Stall Speed
- •Warning to the Pilot of Icing-induced Stalls
- •Stabilizer Stall Due to Ice
- •Effect of Heavy Rain on Stall Speed
- •Stall and Recovery Characteristics of Canards
- •Spinning
- •Primary Causes of a Spin
- •Phases of a Spin
- •The Effect of Mass and Balance on Spins
- •Spin Recovery
- •Special Phenomena of Stall
- •High Speed Buffet (Shock Stall)
- •Answers to Questions on Page 173
- •Key Facts 2
- •Questions
- •Key Facts 1 (Completed)
- •Key Facts 2 (Completed)
- •Answers
- •8 High Lift Devices
- •Purpose of High Lift Devices
- •Take-off and Landing Speeds
- •Augmentation
- •Flaps
- •Trailing Edge Flaps
- •Plain Flap
- •Split Flap
- •Slotted and Multiple Slotted Flaps
- •The Fowler Flap
- •Comparison of Trailing Edge Flaps
- •and Stalling Angle
- •Drag
- •Lift / Drag Ratio
- •Pitching Moment
- •Centre of Pressure Movement
- •Change of Downwash
- •Overall Pitch Change
- •Aircraft Attitude with Flaps Lowered
- •Leading Edge High Lift Devices
- •Leading Edge Flaps
- •Effect of Leading Edge Flaps on Lift
- •Leading Edge Slots
- •Leading Edge Slat
- •Automatic Slots
- •Disadvantages of the Slot
- •Drag and Pitching Moment of Leading Edge Devices
- •Trailing Edge Plus Leading Edge Devices
- •Sequence of Operation
- •Asymmetry of High Lift Devices
- •Flap Load Relief System
- •Choice of Flap Setting for Take-off, Climb and Landing
- •Management of High Lift Devices
- •Flap Extension Prior to Landing
- •Questions
- •Annexes
- •Answers
- •9 Airframe Contamination
- •Introduction
- •Types of Contamination
- •Effect of Frost and Ice on the Aircraft
- •Effect on Instruments
- •Effect on Controls
- •Water Contamination
- •Airframe Aging
- •Questions
- •Answers
- •10 Stability and Control
- •Introduction
- •Static Stability
- •Aeroplane Reference Axes
- •Static Longitudinal Stability
- •Neutral Point
- •Static Margin
- •Trim and Controllability
- •Key Facts 1
- •Graphic Presentation of Static Longitudinal Stability
- •Contribution of the Component Surfaces
- •Power-off Stability
- •Effect of CG Position
- •Power Effects
- •High Lift Devices
- •Control Force Stability
- •Manoeuvre Stability
- •Stick Force Per ‘g’
- •Tailoring Control Forces
- •Longitudinal Control
- •Manoeuvring Control Requirement
- •Take-off Control Requirement
- •Landing Control Requirement
- •Dynamic Stability
- •Longitudinal Dynamic Stability
- •Long Period Oscillation (Phugoid)
- •Short Period Oscillation
- •Directional Stability and Control
- •Sideslip Angle
- •Static Directional Stability
- •Contribution of the Aeroplane Components.
- •Lateral Stability and Control
- •Static Lateral Stability
- •Contribution of the Aeroplane Components
- •Lateral Dynamic Effects
- •Spiral Divergence
- •Dutch Roll
- •Pilot Induced Oscillation (PIO)
- •High Mach Numbers
- •Mach Trim
- •Key Facts 2
- •Summary
- •Questions
- •Key Facts 1 (Completed)
- •Key Facts 2 (Completed)
- •Answers
- •11 Controls
- •Introduction
- •Hinge Moments
- •Control Balancing
- •Mass Balance
- •Longitudinal Control
- •Lateral Control
- •Speed Brakes
- •Directional Control
- •Secondary Effects of Controls
- •Trimming
- •Questions
- •Answers
- •12 Flight Mechanics
- •Introduction
- •Straight Horizontal Steady Flight
- •Tailplane and Elevator
- •Balance of Forces
- •Straight Steady Climb
- •Climb Angle
- •Effect of Weight, Altitude and Temperature.
- •Power-on Descent
- •Emergency Descent
- •Glide
- •Rate of Descent in the Glide
- •Turning
- •Flight with Asymmetric Thrust
- •Summary of Minimum Control Speeds
- •Questions
- •Answers
- •13 High Speed Flight
- •Introduction
- •Speed of Sound
- •Mach Number
- •Effect on Mach Number of Climbing at a Constant IAS
- •Variation of TAS with Altitude at a Constant Mach Number
- •Influence of Temperature on Mach Number at a Constant Flight Level and IAS
- •Subdivisions of Aerodynamic Flow
- •Propagation of Pressure Waves
- •Normal Shock Waves
- •Critical Mach Number
- •Pressure Distribution at Transonic Mach Numbers
- •Properties of a Normal Shock Wave
- •Oblique Shock Waves
- •Effects of Shock Wave Formation
- •Buffet
- •Factors Which Affect the Buffet Boundaries
- •The Buffet Margin
- •Use of the Buffet Onset Chart
- •Delaying or Reducing the Effects of Compressibility
- •Aerodynamic Heating
- •Mach Angle
- •Mach Cone
- •Area (Zone) of Influence
- •Bow Wave
- •Expansion Waves
- •Sonic Bang
- •Methods of Improving Control at Transonic Speeds
- •Questions
- •Answers
- •14 Limitations
- •Operating Limit Speeds
- •Loads and Safety Factors
- •Loads on the Structure
- •Load Factor
- •Boundary
- •Design Manoeuvring Speed, V
- •Effect of Altitude on V
- •Effect of Aircraft Weight on V
- •Design Cruising Speed V
- •Design Dive Speed V
- •Negative Load Factors
- •The Negative Stall
- •Manoeuvre Boundaries
- •Operational Speed Limits
- •Gust Loads
- •Effect of a Vertical Gust on the Load Factor
- •Effect of the Gust on Stalling
- •Operational Rough-air Speed (V
- •Landing Gear Speed Limitations
- •Flap Speed Limit
- •Aeroelasticity (Aeroelastic Coupling)
- •Flutter
- •Control Surface Flutter
- •Aileron Reversal
- •Questions
- •Answers
- •15 Windshear
- •Introduction (Ref: AIC 84/2008)
- •Microburst
- •Windshear Encounter during Approach
- •Effects of Windshear
- •“Typical” Recovery from Windshear
- •Windshear Reporting
- •Visual Clues
- •Conclusions
- •Questions
- •Answers
- •16 Propellers
- •Introduction
- •Definitions
- •Aerodynamic Forces on the Propeller
- •Thrust
- •Centrifugal Twisting Moment (CTM)
- •Propeller Efficiency
- •Variable Pitch Propellers
- •Power Absorption
- •Moments and Forces Generated by a Propeller
- •Effect of Atmospheric Conditions
- •Questions
- •Answers
- •17 Revision Questions
- •Questions
- •Answers
- •Explanations to Specimen Questions
- •Specimen Examination Paper
- •Answers to Specimen Exam Paper
- •Explanations to Specimen Exam Paper
- •18 Index

10
Control and Stability 10
Stability and Control
Longitudinal Dynamic Stability
The considerations of longitudinal dynamic stability are concerned with the time history response of the aeroplane to disturbances, i.e. the variation of displacement amplitude with time following a disturbance.
From previous definition:
•dynamic stability will exist when the amplitude of motion decreases with time, and
•dynamic instability will exist if the amplitude increases with time.
An aeroplane must demonstrate positive dynamic stability for the major longitudinal motions. In addition, the aeroplane must demonstrate a certain degree of longitudinal stability by reducing the amplitude of motion at a certain rate. The required degree of dynamic stability is usually specified by the time necessary for the amplitude to reduce to one-half the original value: the time to damp to half-amplitude.
The aeroplane in free flight has six degrees of freedom: rotation in roll, pitch, and yaw and translation in the horizontal, vertical and lateral directions. In the case of longitudinal dynamic stability, the degrees of freedom can be limited to pitch rotation, plus vertical and horizontal translation.
Since the aeroplane is usually symmetrical from left to right, there will be no need to consider coupling between longitudinal and lateral / directional motions.
Thus, the principal variables in the longitudinal motion of an aeroplane will be:
•The pitch attitude of the aeroplane.
•The angle of attack (which will differ from the pitch attitude by the inclination of the flight path).
•True airspeed (TAS)
The longitudinal dynamic stability of an aeroplane generally consists of two basic modes of oscillation:-
•long period oscillation (phugoid)
•short period motion
While the longitudinal motion of the aeroplane may consist of a combination of these modes, the characteristics of each mode are sufficiently distinct that each oscillatory tendency may be studied separately.
286

Stability and Control
Long Period Oscillation (Phugoid)
The first mode of dynamic longitudinal stability consists of a long period oscillation referred to as the phugoid.
The phugoid or long period oscillation involves noticeable variations in:
•pitch attitude,
•altitude and
•airspeed, but
•nearly constant angle of attack (not much change in load factor).
The phugoid is a gradual interchange of potential and kinetic energy about some equilibrium airspeed and altitude. Figure 10.52 illustrates the characteristic motion of the phugoid.
ANGLE OF ATTACK AT EACH |
INSTANT ALONG THE FLIGHT |
PATH IS ESSENTIALLY |
CONSTANT |
LONG PERIOD |
TIME |
Figure 10.52 Long period oscillation (phugoid)
The period of oscillation in the phugoid is between 1 and 2 minutes. Since the pitch rate is quite low and only negligible changes in angle of attack take place, damping of the phugoid is weak. However, such weak damping does not necessarily have any great consequence. Since the period of oscillation is so great, long period oscillation is easily controlled by the pilot. Due to the nature of the phugoid, it is not necessary to make any specific aerodynamic provisions to counteract it.
10
Stability and Control 10
287

10
Control and Stability 10
Stability and Control
Short Period Oscillation
The second mode of dynamic longitudinal stability is the short period oscillation.
Short period oscillation involves significant changes in angle of attack (load factor), with approximately constant speed, height and pitch attitude; it consists of rapid pitch oscillations during which the aeroplane is constantly being restored towards equilibrium by its static stability and the amplitude of the short period oscillations being decreased by pitch damping.
MOTION OCCURS AT ESSENTIALLY CONSTANT SPEED |
TIME TO DAMP TO |
HALF AMPLITUDE |
TIME |
SHORT PERIOD |
Figure 10.53 Short period oscillation
Short period oscillation at high dynamic pressures with large changes in angle of attack could produce severe ‘g’ loads (large changes in load factor).
Shown in Figure 10.53, the second mode has relatively short periods that correspond closely with the normal pilot response lag time, e.g. 1 or 2 seconds or less. There is the possibility that an attempt by the pilot to forcibly damp an oscillation may actually reinforce the oscillation (PIO) and produce instability.
Short period oscillation is not easily controlled by the pilot.
If short period oscillation occurs, release the controls; the aeroplane is designed to demonstrate the necessary damping. Even an attempt by the pilot to hold the controls stationary when the aeroplane is oscillating may result in a small unstable input into the control system which can reinforce the oscillation to produce failing flight loads.
Modern, large high speed jet transport aircraft are fitted with pitch dampers, which automatically compensate for any dynamic longitudinal instability.
288

Stability and Control 10
Of the two modes of dynamic longitudinal stability, the short period oscillation is of greatest importance. The short period oscillation can generate damaging flight loads due to the rapid changes in ‘g’ loading, and it is adversely affected by pilot response lag (PIO).
It has been stated that the amplitude of the oscillations are decreased by pitch damping, so the problems of dynamic stability can become acute under the conditions of flight where reduced aerodynamic damping occurs.
High altitude, and consequently low density (high TAS), reduces aerodynamic damping, as detailed on page 274.
DYNAMIC STABILITY IS REDUCED AT
HIGH ALTITUDE DUE TO REDUCED
AERODYNAMIC DAMPING
Stability and Control 10
289