
- •1 Сравнительный анализ современных систем автоматического регулирования
- •2. Классификация и характеристики рабочих жидкостей гидроприводов.
- •3.2 Описание работы системы топливоподачи дизельного двигателя автомобиля КамАз
- •3.3 Топливный насос высокого давления
- •3.4 Регулятор частоты вращения коленчатого вала
- •4.2 Выбор и расчёт передаточной функции датчика перемещений
- •4.3 Выбор гидроцилиндра и расчёт его передаточной функции
- •4.5 Расчет передаточной функции системы автоматического
- •4.6 Построение логарифмической амплитудно-частотной и фазо-частотной характеристик системы и их анализ
- •4.7 Построение желаемой лачх.
- •4.8 Опре д е л е н и е з а п а с о в у с т о й ч и в о с т и. По полученной передаточной функции определяется логарифмическая фазовая характеристика (лфчх) скорректированной системы.
- •3.10 Построение желаемой лачх и желаемой фчх
- •6 Технико-экономическое обоснование расчета
- •6.1 Маркетинговые исследования
- •6.2 Определение трудоемкости выполнения научно-исследовательской
- •6.3 Определение плановой себестоимости проведения нир
- •Договорная цена должна обеспечивать получение прибыли. Договорная цена устанавливается с учетом налога на добавленную стоимость:
- •6.2 Характеристика помещения
- •6.3 Чрезвычайные ситуации
- •6.3.3 П р о н и к а ю щ а я р а д и а ц и я. Проникающая радиация – это один из поражающих факторов, представляющих собой гамма-излучение и поток нейтронов.
3.3 Топливный насос высокого давления
Для точного дозирования топлива и подачи его в определенный момент под высоким давлением к форсункам применяется топливный насос высокого давления. Наибольшее распространение на автомобильных дизелях получили многосекционные насосы с постоянным ходом плунжера и регулировкой конца подачи топлива.
По расположению секций насосы делятся на рядные и V-образные. Каждая секция топливного насоса обеспечивает работу одного из цилиндров дизеля, поэтому число секций топливного насоса определяется числом его цилиндров. В нижней части корпуса 1 насоса на двух радиально-упорных шарикоподшипниках 20, уплотненных самоподжимными сальниками, установлен кулачковый вал 12 с шестерней 11.
Рисунок 4 – Топливный насос высокого давления
1 – корпус; 2 – винт ограничения мощности; 3 – рейка; 4 – зацепление с зубчатым венцом; 5 – перепускной клапан; 6 – плунжер; 7 – штуцер;
8 – пробка; 9 – корпус; 10 – тяга регулятора частоты вращения коленчатого вала; 11 – шестерня; 12 – кулачковый вал; 13 – привалочная плоскость насоса высокого давления; 14 – эксцентрик; 15 – ролики; 16 – втулка;
17 – выступ плунжера; 18 – роликовый толкатель; 19 – выступ кулачка;
20 - радиально-упорные шарикоподшипники; 21 – опорные пальцы;
22 - пружина; 23 – ведущая полумуфта; 24 – крышка; 25 – центробежные грузы; 26 – ведомая полумуфта; 27 – ось
На кулачковом валу имеются профилированные кулачки 19 для каждой насосной секции и эксцентрик 14 для приведения в движение насоса низкого давления, который крепится к привалочной плоскости 13 насоса высокого давления.
В перегородке корпуса против каждого кулачка установлены роликовые толкатели 18. Оси роликов 15 своими концами входят в пазы корпуса насоса, предотвращая проворачивание толкателей.
Насосные секции установлены в верхней части корпуса и крепятся винтами. Основной частью каждой насосной секции является плунжерная пара, состоящая из плунжера 6 и гильзы.
При вращении кулачкового вала 12 насоса выступ кулачка 19 набегает на роликовый толкатель 18, который через болт воздействует на плунжер 6 и перемещает его вверх. Когда выступ кулачка выходит из-под ролика толкателя, пружина, упирающаяся в тарелки 28, возвращает плунжер в первоначальное положение. Рейка 3 входит в зацепление с зубчатым венцом 4 поворотной втулки 16, надетой на гильзу, а в вертикальные пазы нижней части втулки входят выступы 17 плунжера.
При перемещении рейки 3 вдоль ее оси втулка 16 поворачивается на гильзе и, действуя на выступы 17 плунжера, поворачивает его, в результате чего изменяется количество топлива, подаваемого к форсункам. Ход рейки ограничивается стопорным винтом, входящим в ее продольный паз. Задний конец рейки соединен с тягой 10 регулятора частоты вращения коленчатого вала, установленного в корпусе 9.
Выступающий из насоса передний конец рейки закрыт запломбированным колпачком, в который ввернут винт 2 ограничения мощности двигателя при обкатке автомобиля.
Для опережения впрыскивания топлива в цилиндры дизеля в зависимости от частоты вращения его коленчатого вала в передней части насоса установлена центробежная муфта. Она состоит из ведущей 23 и ведомой 26 полумуфт. На ведомой полумуфте закреплены две оси 27 с установленными на них центробежными грузами 25, в вырезах которых размещены пружины 22, опирающиеся с одной стороны на оси 27, а с другой — на опорные пальцы 21 ведущей полумуфты 23. Механизм муфты в сборе закрыт крышкой 24, которая навернута на резьбу ведомой муфты.
Работа насоса высокого давления плунжерного типа, установленного на дизелях КамАЗ, состоит из наполнения надплунжерного пространства топливом с частичным его перепуском, подачи топлива под высоким давлением к форсункам, отсечки и перепуска его в сливной топливопровод. При работе двигателя рейка топливного насоса перемещается в соответствии с изменением подачи топлива, при этом одновременно поворачиваются плунжеры всех секций.
Чтобы изменить количество подаваемого топлива плунжер 6 поворачивается относительно гильзы при помощи рейки 3 насоса, которая связана с поворотной втулкой 16. Управление подачей топлива осуществляется из кабины водителя педалью, воздействующей с помощью тяг и рычага и тяг на всережимный регулятор частоты вращения коленчатого вала, расположенный в развале топливного насоса. На крышке регулятора закреплен топливный насос низкого давления и насос ручной подкачки топлива.
Рисунок 5 – Схема работы секции насоса высокого давления
а – впуск (всасывание); б – начало подачи; в – конец подачи
1 – плунжер; 2 – продольный паз; 3 – выпускное отверстие; 4 – сливной канал; 5 – пружина; 6 – нагнетательный клапан; 7 – разгрузочный поясок; 8 – надплунжерное пространство; 9 – впускное отверстие; 10 - подводящий канал; 11 – корпус; 12 – внутреннее пространство гильзы; 13 - винтовая кромка
В виду того что все секции работают одинаково, рассмотрим работу насоса на примере одной из секций, схема работы которой изображена на рисунке 5. При движении плунжера 1 вниз, как показано на рисунке 5, а, внутреннее пространство гильзы 12 наполняется топливом, и одновременно оно подается насосом низкого давления в подводящий канал 10 корпуса 11 насоса. При этом открывается впускное отверстие 9, и топливо поступает в надплунжерное пространство 8. Затем под действием кулачка плунжер начинает подниматься вверх (рисунок 5, б), перепуская топливо обратно в подводящий канал 10 до тех пор, пока верхняя кромка плунжера не перекроет впускное отверстие 9 гильзы. После перекрытия этого отверстия давление топлива резко возрастает и при 1,2—1,8 МПа топливо, преодолевая усилие пружины 5, поднимает нагнетательный клапан 6 и поступает в топливопровод.
Дальнейшее перемещение плунжера вверх вызывает повышение давления до 16,5 МПа, превышающее давление, создаваемое пружиной форсунки, в результате чего игла форсунки приподнимается и происходит впрыскивание топлива в камеру сгорания. Подача топлива продолжается до тех пор, пока винтовая кромка 13 (рисунок 5, в) плунжера не откроет выпускное отверстие 3 в гильзе, в результате чего давление над плунжером резко падает, нагнетательный клапан 6 под действием пружины закрывается и надплунжерное пространство разъединяется с топливопроводом высокого давления. При дальнейшем движении плунжера вверх топливо перетекает в сливной канал 4 через продольный паз 2 и винтовую кромку 13 плунжера.
Перемещение плунжера во втулке с момента закрытия впускного отверстия до момента открытия выпускного отверстия называется активным ходом плунжера, который в основном и определяет количество подаваемого топлива за цикл работы топливной секции.
Изменение количества топлива, подаваемого секцией за один цикл, происходит в результате поворота плунжера 1 зубчатой рейкой. При различных углах поворота плунжера благодаря винтовой кромке смещаются моменты открытия выпускного отверстия. При этом чем позднее открывается выпускное отверстие, тем большее количество топлива может быть подано к форсункам.
1 – плунжер; 2 – выпускное отверстие; 3 – продольный паз; 4 – входное отверстие; 5 – винтовая кромка
Рисунок 6 – Схема изменения подачи топлива
На рисунке 6 показаны следующие положения винтовой кромки плунжера за цикл работы топливной секции:
положение А — максимальная подача топлива и наибольший активный ход плунжера 1. В этом случае расстояние h от винтовой кромки 5 плунжера до выпускного отверстия 2 будет наибольшим;
положение Б — промежуточная подача, так как при повороте плунжера по часовой стрелке расстояние h уменьшается и выпускное отверстие открывается раньше;
положение В — нулевая подача топлива. Плунжер повернут так, что его продольный паз 3 расположен против выпускного отверстия 2 (h = 0), в результате чего при перемещении плунжера вверх топливо вытесняется в сливной канал, подача топлива прекращается и двигатель останавливается.