
- •1 Сравнительный анализ современных систем автоматического регулирования
- •2. Классификация и характеристики рабочих жидкостей гидроприводов.
- •3.2 Описание работы системы топливоподачи дизельного двигателя автомобиля КамАз
- •3.3 Топливный насос высокого давления
- •3.4 Регулятор частоты вращения коленчатого вала
- •4.2 Выбор и расчёт передаточной функции датчика перемещений
- •4.3 Выбор гидроцилиндра и расчёт его передаточной функции
- •4.5 Расчет передаточной функции системы автоматического
- •4.6 Построение логарифмической амплитудно-частотной и фазо-частотной характеристик системы и их анализ
- •4.7 Построение желаемой лачх.
- •4.8 Опре д е л е н и е з а п а с о в у с т о й ч и в о с т и. По полученной передаточной функции определяется логарифмическая фазовая характеристика (лфчх) скорректированной системы.
- •3.10 Построение желаемой лачх и желаемой фчх
- •6 Технико-экономическое обоснование расчета
- •6.1 Маркетинговые исследования
- •6.2 Определение трудоемкости выполнения научно-исследовательской
- •6.3 Определение плановой себестоимости проведения нир
- •Договорная цена должна обеспечивать получение прибыли. Договорная цена устанавливается с учетом налога на добавленную стоимость:
- •6.2 Характеристика помещения
- •6.3 Чрезвычайные ситуации
- •6.3.3 П р о н и к а ю щ а я р а д и а ц и я. Проникающая радиация – это один из поражающих факторов, представляющих собой гамма-излучение и поток нейтронов.
6.3.3 П р о н и к а ю щ а я р а д и а ц и я. Проникающая радиация – это один из поражающих факторов, представляющих собой гамма-излучение и поток нейтронов.
Критерием устойчивости работы проточной части при воздействии проникающей радиации и радиоактивного заражения является максимальная экспозиционная доза гамма-излучения Д, при которой, начинаются изменения параметров элементов, но работа еще не нарушается.
Действие проникающей радиации зависит от вида излучений. Ввиду малой проникающей способности альфа- и бета-частиц, их воздействие на аппаратуру обычно не учитывают. Поток нейтронов проникающей радиации оказывает воздействие на радиоэлектронные устройства при удалении устройства от очага поражения на величину, не превышающую 3 км. На таком расстоянии выход аппаратуры из строя будет вызван действием ударной волны. Таким образом, из всех составляющих радиоактивного излучения наибольшую опасность представляет гамма-излучение.
Ионизирующая способность гамма – лучей характеризуется экспозиционной дозой излучения и измеряется в рентгенах (в СИ Кл/кг).
Гамма – излучение, проходя через различные материалы, ослабляется. Степень ослабления зависит от свойств материалов и толщины защитного слоя.
Для стабильной работы системы необходимо выполнить условие:
Кзащ Косл ,
где Кзащ – коэффициент защиты,
Косл – коэфициент ослабления.
Коэфициент ослабления:
, (…)
где – ожидаемая доза гамма-излучения, Р;
– экспозиционная доза гамма-излучения, Р.
Одним из основных материалов, из которых изготавливается электрогидравлический усилитель является органическое стекло, а оно теряет свои физические свойства и характеристики при экспозиционной дозе гамма-излучения равной 105 Р, то есть является нерадиоактивностойким.
Взяв максимальную ожидаемую дозу гамма-излучения равную 106 Р, можно рассчитать необходимый коэффициент ослабления:
Таким образом, прибор необходимо эксплуатировать в помещениях с коэффициентом ослабления не менее десяти.
Рассчитаем коэффициент защиты:
Кзащ =КсистКэ (…)
где Ксист – коэффициент защиты системы. Для здания цеха Ксист = 6.
Кэкр – коэффициент защиты экрана.
Из формулы (26):
Коэффициент защиты экрана рассчитывается по формуле:
Кэкр=2Н / Dпол , (…)
где Н - толщина защитного экрана;
Dпол – толщина половинного слоя ослабления материала, из которого изготовлен корпус.
Отсюда, толщина защитного экрана:
(28)
Выбираем материала для экрана свинец, для которого Dпол = 2 см. По формуле (28) определяем толщину экрана Н = 4,18 см.
Таким образом, для ослабления радиоактивного излучения в системе предусмотрен защитный экран из свинца толщиной Н = 4,18 см. Повышение устойчивости ЭГУ с МЖС к воздействию радиоактивного излучения заключается также в применении более радиоактивно устойчивого материала.
6.3.4 Э л е к т р о м а г н и т н ы й и м п у л ь с. Электромагнитный импульс способен вызвать мощные импульсы токов и напряжений в проводах, привести к сгоранию чувствительных элементов, к серьезным нарушениям в измерительных приборах.
Для радиоэлектронной аппаратуры, установленной в помещении и не имеющей антенных устройств, основную опасность представляет импульс, прошедший по цепи питания. Для защиты от воздействия электромагнитных полей используются экранирующие устройства (перегородки, камеры), выполненные из листового металла (стали, дюралюминия) толщиной 1,0 – 1,5 мм. Эти устройства заземлены.
Изм.
Лист
№ докум. Подпись
Дата
Лист
УИТС.423124.
181 ПЗ