
- •Глава 5
- •§5.1. Назначение. Типы тензодатчиков
- •§ 5.2. Принцип действия проволочных тензодатчиков
- •§ 5.3. Устройство и установка проволочных тензодатчиков
- •§ 5.4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- •§ 5.5. Методика расчета мостовой схемы с тензодатчиками
- •1. Почему сопротивление проволоки изменяется при деформации?
- •2. Какими преимуществами обладают фольговые и пленочные тензодат-чики по сравнению с проволочными?
- •3. Из каких материалов чаще всего делают проволочные и полупроводниковые тензодатчики?
Глава 5
ТЕНЗОМЕТРИЧЕСКИЕ ДАТЧИКИ
§5.1. Назначение. Типы тензодатчиков
Тензометрические датчики служат для измерения деформаций и механических напряжений в деталях машин и механизмов. Они могут также использоваться для измерения других механических величин (давления, вибрации, ускорения и др.), которые предварительно преобразуются в деформацию.
Работа тензодатчиков основана на изменении активного сопротивления материала при его механической деформации. В качестве материала тензодатчиков используются проводники (в виде проволоки, фольги или пленки) и полупроводники.
данной главе рассматриваются проволочные, фольговые, пленочные и полупроводниковые тензодатчики, относящиеся к параметрическим датчикам. В них выходной сигнал формируется за счет изменения активного сопротивления. Поэтому их называют еще тензорезисторами. Для измерения деформаций используются и тен-зометрические датчики, основанные на других принципах: магнито-упругие датчики (рассмотрены в § 6.5) и струнные датчики (рассмотрены в гл. 11).
§ 5.2. Принцип действия проволочных тензодатчиков
Принцип работы проволочного тензодатчика основан на изменении активного сопротивления проволоки при ее деформации. Изменение активного сопротивления проволоки происходит по двум причинам: во-первых, изменяются геометрические размеры проволоки (длина /, сечение s); во-вторых, при деформации изменяется удельное сопротивление р материала проволоки. А эти величины и определяют активное сопротивление проволоки:
Рассмотрим (рис. 5.1) провод длиной /, радиусом г, сечением s = nr* и объемом V= яг2/, который при деформации (растяжении) под влиянием силы F получает удлинение dl и уменьшение радиуса dr. Следовательно, новый объем проволоки:
Пренебрегая бесконечно малыми высших порядков [вида (dr)2, drd/J, получим
размеров проволоки при растяжении; для металлов ц = 0,24*0,5. Если бы материал не изменял объем при растяжении, то dK=0 и ц = 0,5. Таким образом, реальные металлы изменяют свой объем, а следовательно, они претерпевают и внутриструктурные изменения: очевидно меняется плотность материала и его удельное сопротивление.
Для определения изменения сопротивления проволоки при растяжении продифференцируем уравнение (5.1), полагая, что все входящие в него члены зависят от усилия F.
Чувствительность проволочного тензодатчика определяем как отношение величины относительного изменения сопротивления по (5.9) к относительному изменению линейного размера:
Обозначим третье слагаемое в (5.10) через коэффициент т, учитывающий изменение удельного сопротивления, связанное с изменением размеров
—ч.
Слагаемое (1 + 2ц) для металлов может иметь максимальное значение 1,8 (при ц = 0,4). Но чувствительность для некоторых сплавов превышает 2. Это как раз и означает, что т > 0, т. е. при деформации изменяется удельное сопротивление.
В табл. 5.1 приведены характеристики некоторых сплавов, используемых для проволочных тензодатчиков. Следует иметь в виду, что деформация не является единственной причиной изменения сопротивления тензодатчика. Сопротивление меняется и в зависимости от температуры. Это явление используется в термосопротивлениях (см. гл. 9). Очевидно, для уменьшения температурной погрешности тензодатчика его материал должен иметь высокую чувствительность SR при малом температурном коэффициенте расширения и малом значении термоЭДС при контакте с медными соединительными проводами. В табл. 5.1 приведены пределы изменения характеристик материалов проволочных тензодатчиков, поскольку эти характеристики зависят не только от состава сплава, но и от технологии изготовления.
Тензочувствительность полупроводников во много раз больше тензочувствительности металлов.