
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •1. Как проявляется эффект Холла? : 2. Почему в; магнитном: поле изменяется сопротивление проводника?
Глава 14
ДАТЧИКИ ХОЛЛА И МАГНИТОСОПРОТИВЛЕНИЯ
§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
Эффект Холла — это физическое явление, которое заключается в следующем. Рассмотрим пластинку (рис. 14.1) из проводящего материала, вдоль которой проходит ток /. Если перпендикулярно плоскости пластинки и направлению тока действует магнитное поле напряженностью Я, то в пластине возникает ЭДС, пропорциональная и току, и напряженности магнитного поля:
где К= kx I d — коэффициент, зависящий от материала и толщины пластины d\ kx — постоянная Холла. '
Направление этой ЭДС, которая на-1ывается ЭДС Холла, перпендикулярно •оку и полю, т. е. ее можно замерить яежду боковыми продольными гранями шастины (рис. 14.1) с помощью элект-юизмерительного прибора. Причина юявления ЭДС Холла в том, что на (вяжущиеся заряды в магнитном поле (ействует сила Лоренца. Ток в пласти-ie — это и есть упорядоченное движение зарядов (в металле — электронов). Под действием магнитного поля они смещаются перпендикулярно направлению своего движения и вблизи одной продольной грани возникает избыток зарядов, а вблизи другой — недостаток. В обычных проводниковых материалах ЭДС Холла очень мала, что объясняется малой скоростью (точнее — подвижностью) носителей тока из-за их большой концентрации. Хотя эффект Холла известен уже более ста лет, практическое применение его началось лишь в итоге развития технологии получения полупроводников. Именно в чистых полупроводниках обеспечивается высокая подвижность носителей тока, поэтому постоянная Холла для чистых полупроводников во много раз больше, чем для металлов.
Эффект магнитосопротивления— это другое физическое явление, заключающееся в изменении сопротивления проводящих тел в магнитном поле. Объясняется это тем, что в присутствии магнитного поля на носители тока действует сила Лоренца, изменяющая траекторию их движения. Если бы не было магнитного поля, то под действием приложенного к проводящему телу напряжения носители тока перемещались бы по кратчайшему направлению. Изменение траектории под действием магнитного поля всегда удлиняет путь носителей тока, что проявляется как увеличение сопротивления. В сильных поперечных магнитных полях некоторые вещества могут иметь относительное увеличение сопротивления а = ДЛ/Л в десятки раз. Чаще всего величина а связана с напряженностью магнитного поля Н квадратичной зависимостью
где kr — коэффициент, зависящий от материала и размеров.
Эффекты Холла и магнитосопротивления используются в датчиках, с помощью которых могут быть измерены различные электрические и магнитные величины. Кроме того, они могут использоваться для математической обработки электрических сигналов: сложе-
ния, умножения, деления, возведения в квадрат и извлечения корня; для различных преобразований электрических сигналов.
§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
Использование датчиков Холла для целей автоматического измерения будет рациональным в том случае, если они имеют достаточно высокую чувствительность и мало подвержены влиянию температуры. Чувствительность датчика зависит от выходной ЭДС, т. е. от постоянной Холла, которая, в свою очередь, определяется подвижностью носителей тока. В проводящих телах носителями тока являются электроны. При обычных температурах электроны находятся в хаотическом тепловом движении с самыми различными скоростями. Однако если вдоль тела создать электрическое поле Е, приложив напряжение U, то все электроны начнут передвигаться в направлении поля с некоторой средней скоростью v (при этом отдельные электроны могут иметь как большую, так и меньшую скорости). Подвижность носителей тока (/я) определяется как отношение скорости v к напряженности электрического поля £:
Подвижность зависит от того, как часто электрон при своем движении сталкивается с решеткой твердого тела. Следует особо отметить, что большое значение ЭДС Холла еще не означает, что в этом веществе велик эффект Холла и оно годится для технических применений. Большое значение ЭДС может быть получено за счет большого напряжения U, т. е. больших затрат электрической энергии. В то же время в другом материале такая же ЭДС Холла и те же скорости носителей тока могут быть получены при меньшем напряжении только за счет большей подвижности. Такой материал выгоднее для применения в датчике Холла.
Короче говоря, основным требованием, предъявляемым к материалам для датчиков, является сочетание большой подвижности носителей тока с минимальными температурными зависимостями.
В зависимости от технологии изготовления различают кристаллические (в форме пластинки) и пленочные датчики.
В качестве материала кристаллических датчиков используются различные соединения индия; мышьяковистый индий InAs, фосфид индия InP, сурьмянистый индий InSb, а также германий Ge и крем ний .Si.