
- •§ 6.3. Дифференциальные (реверсивные) индуктивные датчики
- •§ 6.4. Трансформаторные датчики
- •§ 6.5. Магнитоупругие датчики
- •§ 6.6. Индукционные датчики
- •Глава 7 пьезоэлектрические датчики
- •§ 7.1. Принцип действия
- •§ 7.2. Устройство пьезодатчиков
- •§ 7.3. Чувствительность пьезодатчика и требования к измерительной цепи
- •1. В чем заключается пьезоэлектрический эффект?
- •2. В каких материалах наиболее сильно проявляется пьезоэлектрический эффект?
- •Глава 8
- •§ 8.1. Принцип действия. Типы емкостных датчиков
- •§ 8.2. Характеристики и схемы включения емкостных датчиков
- •1. Под влиянием каких величин изменяется емкость конденсатора?
- •2. Какие схемы используют для включения емкостного датчика?
- •3. В чем достоинство резонансной схемы включения?
- •Глава 9 терморезисторы
- •§ 9.1. Назначение. Типы терморезисторов
- •§ 9.2. Металлические терморезисторы
- •§ 9.3. Полупроводниковые терморезисторы
- •§ 9.4. Собственный нагрев термисторов
- •§ 9.5. Применение терморезисторов
- •Глава 10 термоэлектрические датчики
- •§ 10.1. Принцип действия
- •§ 10.2. Материалы, применяемые для термопар
- •§ 10.3. Измерение температуры с помощью термопар
- •Глава 11 струнные датчики
- •§ 11.1. Назначение и принцип действия
- •§ 11.2. Устройство струнных датчиков
- •1. В чем достоинство частотного метода измерения?
- •2. Как зависит частота колебаний натянутой струны от силы натяжения и от длины струны?
- •Глава 12 фотоэлектрические датчики
- •§ 12.1. Назначение. Типы фотоэлектрических датчиков
- •§ 12.2. Приемники излучения фотоэлектрических датчиков
- •§ 12.3. Применение фотоэлектрических датчиков
- •1. Расскажите о различных проявлениях фотоэффекта: о внешнем, внутреннем и вентильном фотоэффектах.
- •2. Что такое спектральная характеристика?
- •3. Приведите примеры применения фотоэлектричесих датчиков в повседневной жизни.
- •Глава 13 ультразвуковые датчики
- •§ 13.1. Принцип действия и назначение
- •§ 13.2. Излучатели ультразвуковых колебаний
- •§ 13.3. Применение ультразвуковых датчиков
- •1. Поясните принцип действия эхолота.
- •2. Как работает излучатель ультразвуковых колебаний?
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •1. Как проявляется эффект Холла? : 2. Почему в; магнитном: поле изменяется сопротивление проводника?
- •Раздел III
- •Глава 15
- •§ 15.1. Назначение. Основные понятия
- •§ 15.2. Кнопки управления и тумблеры
- •§ 15.3. Пакетные переключатели
- •§ 15.4. Путевые и конечные выключатели
- •1. Что такое коммутация?
- •2. Какие коммутационные элементы вы используете у себя дома?
- •3. Как осуществляется моментное действие выключателя?
- •Глава 16
- •§ 16.1. Режим работы контактов
- •§ 16.2. Конструктивные типы контактов
- •§ 16.3. Материалы контактов
- •1. От каких факторов зависит сопротивление контактного перехода?
- •2. Какие конструкции контактного узла применяют для повышения надежности его работы?
- •3. Какие материалы используют для контактов?
- •Глава 17
- •§ 17.1. Назначение. Принцип действия
- •§ 17.2. Основные параметры и типы электромагнитных реле
- •§ 17.3. Электромагнитные реле постоянного тока
- •§ 17.4. Последовательность работы электромагнитного реле
- •§ 17.5. Тяговая и механическая характеристики электромагнитного реле
- •§ 17.6. Основы расчета магнитопровода электромагнитного реле
- •§ 17.7. Основы расчета обмотки реле
- •§ 17.8. Электромагнитные реле переменного тока
- •§ 17.9. Быстродействие электромагнитных реле
- •Глава 18
- •§ 18.1. Назначение. Принцип действия
- •§ 18.3. Настройка контактов и устройство поляризованного реле
- •§ 18.4. Вибропреобразователи
- •1. В чем разница между поляризованным и нейтральным реле?
- •2. Как выполняется настройка контактов поляризованного реле?
- •3. Зачем нужен вибропреобразователь?
- •Глава 19
- •§ 19.1. Типы специальных реле
- •§ 19.2. Магнитоэлектрические реле
- •§ 19.3. Электродинамические реле
- •§ 19.5. Реле времени
- •§ 19.6. Электротермические реле
- •§ 19.7. Шаговые искатели и распределители
- •§ 19. . Магнитоуправляемые контакты. Типы и устройство
- •§ 19.9. Применение магнитоуправляемых контактов
- •Глава 20
- •§ 20.1. Назначение контакторов и магнитных пускателей
- •§ 20.2. Устройство и особенности контакторов
- •§ 20.3. Конструкции контакторов
1. Расскажите о различных проявлениях фотоэффекта: о внешнем, внутреннем и вентильном фотоэффектах.
2. Что такое спектральная характеристика?
3. Приведите примеры применения фотоэлектричесих датчиков в повседневной жизни.
Глава 13 ультразвуковые датчики
§ 13.1. Принцип действия и назначение
Работа ультразвуковых датчиков основана на взаимодействии ультразвуковых колебаний с измеряемой средой. К ультразвуковым относят механические колебания, происходящие с частотой более 20 000 Гц, т. е. выше верхнего предела звуковых колебаний, воспринимаемых человеческим ухом. Распространение ультразвуковых колебаний в твердых, жидких и газообразных средах зависит от свойств среды. Например, скорость распространения этих колеба--ний для разных газов находится в пределах от 200 до 1300 м/с, для жидкостей — от 1100 до 2000, для твердых материалов — от 1500 до 8000 м/с. Очень сильно выражена зависимость скорости колебаний в газах от давления.
Ультразвуковые методы измерения относятся к электрическим методам постольку, поскольку возбуждение ультразвуковых колебаний и прием этих колебаний выполняются электрическим способом. Обычно для этого используют пьезоэлементы и магнитострик-ционные преобразователи. В гл. 7 были рассмотрены пьезоэлектрические датчики, преобразующие давление в электрический сигнал. Это прямой пьезоэффект. Он используется в приемниках ультразвукового излучения. Обратный пьезоэлектрический эффект заключается в сжатии и растяжении пьезокристалла, к которому приложено переменное напряжение. Для возбуждения ультразвуковых колебаний и используется этот эффект. Таким образом, пьезоэлемент может использоваться попеременно то излучателем, то приемником ультразвуковых колебаний.
Магнитострикционные излучатели ультразвука используют явление деформации ферромагнитов в переменном магнитном поле.
Поясним работу ультразвукового датчика на примере эхолота — прибора для измерения глубины моря (рис. 13.1). При подаче переменного напряжения на пьезоэлемент 1 возбуждаются ультразвуковые колебания, направленные вертикально вниз. Отраженный ультразвуковой импульс воспринимается пьезоэ-лементом 2. Электрический прибор 3 измеряет время t между посылаемым и принимаемым импульсами. Глубина моря пропорциональна этому времени и скорости распространения звука v в воде:
H = vt/2. (13.1)
Шкала прибора градуируется непосредственно в метрах. Аналогично действует ультразвуковой локатор, опреде-
ляющий расстояние до препятствия на пути корабля в горизонтальном направлении. Некоторые животные (например, летучие мыши и дельфины) имеют органы ориентировки, действующие по принципу ультразвукового локатора.
Ультразвуковые колебания имеют энергию значительно большую, чем звуковые, поскольку энергия пропорциональна квадрату частоты. Кроме того, сравнительно просто осуществляется направленное излучение ультразвука.
С помощью ультразвуковых датчиков обнаруживают дефекты в металлических деталях: трещины в изделиях, полости в отливках и т. д. Ультразвуковые датчики играют важную роль в дефектоскопии, в неразрушающих методах контроля. Кроме того, ультразвуковые датчики используются в приборах для измерения расхода, уровня, давления.