
раздельные источники питания, но в любом случае должны быть решены все аспекты проблемы электромагнитной совместимости.
Создание микропроцессорного комплекта МПК БИС привело к появлению принципиально новых направлений в применении цифровой вычислительной техники и позволило осуществить встроенное управление простым оборудованием и приборами, распределенное управление сложным оборудованием и агрегатами, распределенные вычисления в многопроцессорных системах.
Использование микропроцессоров и микроЭВМ дает возможность получить существенный технико-экономических эффект, но требует значительных трудовых и денежных затрат.
Пользователь должен изучить и оценить преимущества использования для своих целей многих видов микропроцессорных аппаратурных средств, среди которых наиболее типичны однокристальные, многокристальные и секционные многокристальные микропроцессоры; однокристальные микроЭВМ; все БИС микропроцессорного комплекта и совместимые с ними по конструктивно-функциональным признакам обычные ИС; минимальные микроЭВМ, скомпонованные на одиночной печатной плате; набор модулей микроЭВМ в виде совокупности печатных плат; законченные микроЭВМ в определенной конструкции; законченные диалоговые вычислительные комплексы; периферийные устройства ЭВМ, датчики, исполнительные механизмы; источники питания и т. д. В противном случае он на какой-то стадии работы может внезапно понять, что получает набор компонентов вместо законченной системы. В результате пользователь должен будет заниматься проектированием системы, средствами программного обеспечения и отладки. Вместо решения своих задач он будет занят созданием самой системы. Проблема выбора и оценки требуемых компонентов, обоснование желаемой архитектуры могут быть успешно решены лишь при квалифицированном комплексном подходе к аппаратуре, программам и оборудованию.
Оборудование, в которое встраивается микропроцессор, должно быть оснащено датчиками, определяющими режимы работы его отдельных частей или технологического процесса, а также исполнительными механизмами, позволяющими влиять на протекающий процесс. Информация отдатчиков и сигналы воздействия на исполнительные механизмы почти всегда имеют параметры сигналов, отличающиеся от принятых в микропроцессоре.
Устройства согласования сложно изготовлять в виде интегральных схем, поскольку в них происходит усиление очень малых сигналов, преобразование аналоговых сигналов в дискретные и,наоборот, световых, магнитных и других в электрические и т. д. Естественным выходом из этого положения является миниатюризация всех компонентов управляющих систем, которая приводит к необходимости создания не только самого МП, но и семейства интегральных схем, совместимых электрически и конструктивно между собой, а также с семействами датчиков и исполнительных механизмов.
Комплексный подход к созданию и применению микропроцессорных информационно-управляющих систем гарантирует полную
и эффективную реализацию тех преимуществ, которые потенциально предполагают использование микропроцессоров для решения важных задач научно-технического прогресса во многих областях.
2. РАЗВИТИЕ АРХИТЕКТУРЫ МИКРОПРОЦЕССОРОВ 2.1. Классификация микропроцессоров
Микропроцессор характеризуется очень большим числом параметров и качеств, поскольку он, с одной стороны функционально является сложным программно-управляемым цифровым процессором, т. е. устройством ЭВМ, а с другой — интегральной схемой (схемами) с высокой степенью интеграции элементов, т. е. электронным прибором. Поэтому для микропроцессора важны такие качества и параметры, как тип корпуса, количество источников питания, требования к синхронизации, мощность рассеяния, температурный диапазон, возможность расширения разрядности, цикл выполнения команд (микрокоманд), уровни сигналов, помехоустойчивость, нагрузочная способность, объединение сигналов на выходах, надежность, долговечность и т. д.
Микропроцессор как функциональное устройство ЭВМ обеспечивает эффективное автоматическое выполнение операций обработки цифровой информации в соответствии с заданным алгоритмом. Для решения широкого круга задач в различных областях применений микропроцессор должен обладать алгоритмически полной системой команд (операций). Теоретически показано, что минимальная алгоритмически полная система команд процессора состоит из одной или нескольких универсальных команд. Однако использование процессоров с минимальными по числу операций системами команд ведет к неэкономичному использованию информационных емкостей памяти и значительным затратам времени на выполнение «длинных» программ. Поэтому обычно в микропроцессоры встраиваются аппаратурные средства, позволяющие реализовать многие десятки и сотни команд. Такие развитые системы команд дают возможность обеспечить компактную запись алгоритмов и соответственно эффективные программы.
При проектировании микропроцессоров решают задачу определения наборов команд, выполняемых программным или аппаратурным способом на основе заданной системы микрокоманд. Аппаратурная реализация сложных команд дает возможность увеличить быстродействие микропроцессора, но требует значительных аппаратурных ресурсов кристалла интегральной схемы микропроцессора. Программная реализация сложных команд позволяет обеспечивать программирование сложных задач, изменять количество и особенности исполнения сложных команд. Однако скорость исполнения программных команд ниже скорости исполнения аппаратур-но-реализованных команд.
всех
аппаратурных средств процессора в виде
одной БИС или СБИС.
По мере увеличения степени интеграции
элементов в кристалле
и числа выводов корпуса параметры
однокристальных •
микропроцессоров улучшаются. Однако
возможности однокристальных
микропроцессоров ограничены аппаратурными
ресурсами кристалла
и корпуса. Поэтому более широко
распространены многокристальные
микропроцессоры, а также многокристальные
секционные
микропроцессоры.
Для описания МП как функциональных устройств необходимо охарактеризовать формат обрабатываемых данных и команд, количество, тип и гибкость команд, методы адресации данных, число внутренних регистров общего назначения и регистров результата, возможности организации и адресации стека, параметры виртуальной памяти и информационную емкость прямоадресуемой памяти. Большое значение имеют средства построения системы прерываний программ, построения эффективных систем ввода-вывода данных и развитого интерфейса.
По числу БИС в микропроцессорном комплек-т е различают микропроцессоры однокристальные, многокристальные и многокристальные секционные.
Процессоры даже самых простых ЭВМ имеют сложную функциональную структуру, содержат большое количество электронных элементов и множество разветвленных связей. Реализовать принципиальную схему обычного процессора в виде одной или нескольких БИС практически невозможно из-за специфических особенностей БИС (ограниченность количества элементов, сложность выполнения разветвленных связей, сравнительно небольшое число выводов корпуса). Поэтому необходимо изменять структуру процессора так, чтобы полная принципиальная схема или ее части имели количество элементов и связей, совместимое с возможностями БИС. При этом микропроцессоры приобретают внутреннюю магистральную структуру, т. е. в них к единой внутренней информационной магистрали подключаются все основные функциональные блоки (арифметическо-логический, рабочих регистров, стека, прерываний, интерфейса, управления и синхронизации и др.).
Для обоснования классификации микропроцессоров по числу БИС надо распределить все аппаратурные блоки процессора между основными тремя функциональными частями: операционной, управляющей и интерфейсной. Сложность операционной и управляющей частей процессора определяется их разрядностью, системой команд и требованиями к системе прерываний; сложность интерфейсной части — разрядностью и возможностями подключения других устройств ЭВМ (памяти, внешних устройств, датчиков и исполнительных механизмов,и др.). Интерфейс процессора содержит несколько десятков шин информационных магистралей данных (МД), адресов (МА) и управления (МУ).
Однокристальные микропроцессоры получаются при реализации
Для получения многокристального микропроцессора необходимо провести разбиение его логической структуры на функционально законченные части и реализовать их в виде БИС (СБИС). Функциональная законченность БИС многокристального микропроцессора означает, что его части выполняют заранее определенные функции и могут работать автономно, а для построения развитого процессора не требуется организации большого количества новых связей и каких-либо других электронных ИС БИС.
На рис. 2.1 а показано функциональное разбиение структуры процессора при создании трехкристального микропроцессора (пунктирные линии), содержащего БИС операционного, БИС управляющего и БИС интерфейсного процессоров.
Операционный процессор (ОП) служит для обработки данных, управляющий процессор (УП) выполняет функции выборки, декодирования и вычисления адресов операндов и также генерирует последовательности микрокоманд. Автономность работы и большое быстродействие БИС УП позволяет выбирать команды из памяти с большей скоростью, чем скорость их исполнений БИС ОП. При этом в УП образуется очередь еще не исполненных команд, а также заранее подготавливаются те данные, которые потребуются ОП, в следующих циклах работы. Такая опережающая выборка команд экономит время ОП на ожидание операндов, необходимых для выполнения команд программ. Интерфейсный процессор (ИП) позволяет подключить память и периферийные средства к микропроцессору, по существу является сложным контроллером для устройств
ввода-вывода информации. БИС ИП выполняет также функции канала прямого доступа к памяти.
Выбираемые из памяти команды распознаются и выполняются каждой частью микропроцессора автономно, и поэтому может быть обеспечен режим одновременной работы всех БИС МП, т. е. конвейерный поточный режим исполнения последовательности команд программы (выполнение последовательности с небольшим временным сдвигом). Такой режим работы значительно повышает производительность микропроцессора.
Многокристальные секционные микропроцессоры получаются в том случае, когда в виде БИС реализуются части (секции) логической структуры процессора при функциональном разбиении ее вертикальными плоскостями (рис. 2.1, б). Для построения многоразрядных микропроцессоров при параллельном включении секций БИС МП в них добавляются средства «стыковки».
Для создания высокопроизводительных многоразрядных микропроцессоров требуется столь много аппаратурных средств, не реализуемых в доступных БИС, что может возникнуть необходимость еще в функциональном разбиении структуры микропроцессора горизонтальными плоскостями. В результате рассмотренного функционального разделения структуры микропроцессора на функционально и конструктивно законченные части создаются условия реализации каждой из них в виде БИС. Все они образуют комплект секционных БИС МП.
Таким образом, микропроцессорная секция — это БИС, предназначенная для обработки нескольких разрядов данных или выполнения определенных управляющих операций. Секционность БИС МП определяет возможность «наращивания» разрядности обрабатываемых данных или усложнения устройств управления микропроцессором при «параллельном» включении большего числа БИС.
За 10 лет с момента создания однокристальные микропроцессоры развились от простых специализированных 4-разрядных до 16-разрядных процессоров, сравнимых по параметрам с процессорами средних мини-ЭВМ начала 80-х годов. Трехкристальные микропроцессоры имеют разрядность до 32 бит и параметры, сравнимые с параметрами старших моделей рядов мини-ЭВМ и средних ЭВМ общего применения.
Многокристальные секционные микропроцессоры имеют разрядность от 2—4 до 8—16 бит и позволяют создавать разнообразные высокопроизводительные процессоры ЭВМ.
Однокристальные и трехкристальные БИС МП, как правило, изготовляют на основе микроэлектронных технологий униполярных полупроводниковых приборов, а многокристальные секционные БИС МП — на основе технологии биполярных полупроводниковых приборов.
Использование многокристальных микропроцессорных высоко-
скоростных биполярных БИС, имеющих функциональную законченность при малой физической разрядности обрабатываемых данных и монтируемых в корпус с большим числом выводов, позволяет организовать разветвление связи в процессоре, а также осуществить конвейерные принципы обработки информации для повышения его производительности.
По назначению различают универсальные и специализированные микропроцессоры.
Универсальные микропроцессоры могут быть применены для решения широкого круга разнообразных задач. При этом их эффективная производительность слабо зависит от проблемной специфики решаемых задач. Специализация МП, т. е. его проблемная ориентация на ускоренное выполнение определенных функций, позволяет резко увеличить эффективную производительность при решении только определенных задач.
Среди специализированных микропроцессоров можно выделить различные микроконтроллеры, ориентированные на выполнение сложных последовательностей логических операций; математические МП, предназначенные для повышения производительности при выполнении арифметических операций за счет, например, матричных методов их выполнения; МП для обработки данных в различных областях применений и т. д. С помощью специализированных МП можно эффективно решать новые сложные задачи параллельной обработки данных. Например, конволюция позволяет осуществить более сложную математическую обработку сигналов, чем широко используемые методы корреляции. Последние в основном сводятся к сравнению всего двух серий данных — входных, передаваемых формой сигнала, и фиксированных опорных — и к определению их подобия. Конволюция дает возможность в реальном масштабе времени находить соответствие для сигналов изменяющейся формы путем сравнения их с различными эталонными сигналами, что, например, может позволить эффективно выделить полезный сигнал на фоне шума. Существовавшие до сих пор конвольверы на базе набора ИС имели большие размеры и потребляли значительную мощность. Кроме того, как правило, и конволюция и корреляция, которые являются видами цифровой согласованной фильтрации, нуждаются в обширном программном обеспечении, особенно при «бедности» аппаратурных средств конвольвера или коррелятора.
Разработанные однокристальные конвольверы используются в устройствах опознавания образов в тех случаях, когда возможности сбора данных превосходят способности системы обрабатывать эти данные.
По виду обрабатываемых входных сигналов различают цифровые и аналоговые микропроцессоры. Сами микропроцессоры — цифровые устройства, однако могут иметь встроенные аналого-цифровые и цифро-аналоговые преобразователи. Поэтому входные аналоговые сигналы передаются в МП через преобразователь в цифровой форме, обрабатываются и после обратного преобразования в аналоговую форму поступают на выход. С архитектурной
точки зрения такие микропроцессоры представляют собой аналоговые функциональные преобразователи сигналов и называются аналоговыми микропроцессорами. Они выполняют функции любой аналоговой схемы (например, производят генерацию колебаний, модуляцию, смещение, фильтрацию, кодирование и декодирование сигналов в реальном масштабе времени и т. д., заменяя сложные схемы, состоящие из операционных усилителей, катушек индуктивности, конденсаторов и т. д.). При этом применение аналогового микропроцессора значительно повышает точность обработки аналоговых сигналов и их воспроизводимость, а также расширяет функциональные возможности за счет программной «настройки» цифровой части микропроцессора на различные алгоритмы обработки сигналов.
Обычно в составе однокристальных аналоговых МП имеется несколько каналов аналого-цифрового и цифро-аналоговово преобразования. В аналоговом микропроцессоре разрядность обрабатываемых данных достигает 24 бит и более, большое значение уделяется увеличению скорости выполнения арифметических операций.
Отличительная черта аналоговых микропроцессоров — способность к переработке большого объема числовых данных, т. е. к выполнению операций сложения и умножения с большой скоростью, при необходимости даже за счет отказа от операций прерываний и переходов. Аналоговый сигнал, преобразованный в цифровую форму, обрабатывается в реальном масштабе времени и передается на выход обычно в аналоговой форме через цифро-аналоговый преобразователь. При этом согласно теореме Котельникова частота квантования аналогового сигнала должна вдвое превышать верхнюю частоту сигнала.
Сравнение цифровых микропроцессоров производится сопоставлением времени выполнения ими списков операций. Сравнение же аналоговых микропроцессоров производится по количеству эквивалентных звеньев аналого-цифровых фильтров — рекурсивных фильтров второго порядка. Производительность аналогового микропроцессора определяется его способностью быстро выполнять операции умножения: чем быстрее осуществляется умножение, тем больше эквивалентное количество звеньев фильтра в аналоговом преобразователе и тем более сложный алгоритм преобразования цифровых сигналов можно задавать в микропроцессоре.
Одним из направлений дальнейшего совершенствования аналоговых микропроцессоров является повышение их универсальности и гибкости. Поэтому вместе с повышением скорости обработки большого объема цифровых данных будут развиваться средства обеспечения развитых вычислительных процессов обработки цифровой информации за счет реализации аппаратурных блоков прерывания программ и программных переходов.
По характеру временной организации работы микропроцессоры делят на синхронные и асинхронные.
Синхронные микропроцессоры — микропроцессоры, в которых начало и конец выполнения операций задаются устройством управ-
ления (время выполнения операций в этом случае не зависит от вида выполняемых команд и величин операндов).
Асинхронные микропроцессоры — позволяют начало выполнения каждой следующей операции определить по сигналу фактического окончания выполнения предыдущей операции. Для более эффективного использования каждого устройства микропроцессорной системы в состав асинхронно работающих устройств вводят электронные цепи, обеспечивающие автономное функционирование устройств. Закончив работу над какой-либо операцией, устройство вырабатывает сигнал запроса, означающий его готовность к выполнению следующей операции. При этом роль естественного распределителя работ принимает на себя память, которая в соответствии с заранее установленным приоритетом выполняет запросы остальных устройств по обеспечению их командной информацией и данными.
По организации структуры микропроцессорных систем различают микроЭВМ одно- и многомагистральные. В одномагистральных микроЭВМ все устройства имеют одинаковый интерфейс и подключены к единой информационной магистрали, по которой передаются коды данных, адресов и управляющих сигналов.
В многомагистральных микроЭВМ устройства группами подключаются к своей информационной магистрали. Это позволяет осущест* вить одновременную передачу информационных сигналов по нескольким (или всем) магистралям. Такая организация систем усложняет их конструкцию, однако увеличивает производительность.
По количеству выполняемых программ различают одно- и многопрограммные микропроцессоры.
В однопрограммных микропроцессорах выполняется только одна программа. Переход к выполнению другой программы происходит после завершения текущей программы.
В много- или мультипрограммных микропроцессорах одновременно выполняется несколько (обычно несколько десятков) программ. Организация мультипрограммной работы микропроцессорных управляющих систем позволяет осуществить контроль за состоянием и управлением большим числом источников или приемников информации.
По назначению микропроцессоры делят на универсальные и специализированные. Универсальные МП — это такие, в системе команд которых заложена алгоритмическая универсальность. Последнее означает, что выполняемый машиной состав команд позволяет получить преобразование информации в соответствии с любым заданным алгоритмом. К универсальным МП относятся и секционные микропроцессоры, поскольку для них система команд может быть оптимизирована в каждом частном проекте создания секционного микропроцессора. Специализированные микропроцессоры предназначены для решения определенного класса задач, а иногда только для решений одной конкретной задачи. Их существенными особенностями являются простота управления, компактность аппаратурных средств, низкая стоимость и малая мощность потребления.