
- •§ 20.4. Магнитные пускатели
- •§ 20.5. Автоматические выключатели
- •Глава 21
- •§ 21.1. Назначение электромагнитных исполнительных устройств
- •§ 21.2. Классификация электромагнитов
- •§ 21.3. Порядок проектного расчета электромагнита
- •§ 21.4. Особенности расчета электромагнитов переменного тока
- •§ 21.5. Электромагнитные муфты
- •1. Принцип действия электромагнита.
- •2. Каков порядок расчета электромагнита?
- •3. Как работает электромагнитная муфта?
- •Раздел IV
- •Глава 22
- •§ 22.1. Физические основы работы магнитных усилителей
- •§ 22.2. Принцип действия магнитного усилителя
- •§ 22.3. Основные схемы и параметры нереверсивных магнитных усилителей
- •§ 22.4. Основные характеристики магнитных усилителей
- •§ 22.5. Теория идеального магнитного усилителя
- •§ 22.6, Инерционность идеального магнитного усилителя
- •1. Принцип действия магнитного усилителя.
- •2. Почему в магнитном усилителе выходной сигнал не влияет на входной?
- •3. Какими параметрами характеризуется магнитный усилитель?
- •Глава 23
- •§ 23.1. Назначение и способы введения обратной связи
- •§ 23.2. Однотактный магнитный усилитель с внешней обратной связью
- •§ 23.3. Инерционность магнитного усилителя с обратной связью
- •§ 23.4. Регулировка коэффициента обратной связи
- •§ 23.5. Характеристики реального магнитного усилителя "' с обратной связью ' * ' *
- •§ 23.6. Графическое построение статической характеристики магнитного усилителя с обратной связью
- •§ 23.7. Магнитные усилители с внутренней обратной связью
- •1. Зачем в магнитных усилителях используется обратная связь?
- •2. В чем разница между внешней и внутренней обратной связью?
- •3. Как регулируется коэффициент обратной связи?
- •Глава 24
- •§ 24.1. Статическая характеристика реверсивного (двухтактного) магнитного усилителя
- •§ 24.2. Усилители с выходным переменным током
- •§ 24.3. Реверсивные магнитные усилители с выходным постоянным током
- •§ 24.4. Обратная связь в реверсивных магнитных усилителях
- •§ 24.5. Основы расчета магнитных усилителей
- •1. Зачем нужна обмотка смещения?
- •2. Какой вид имеет статическая характеристика реверсивного магнитного усилителя?
- •3. Какой порядок расчета магнитного усилителя?
- •Глава 25
- •§ 25.1. Многокаскадный магнитный усилитель
- •§ 25.3. Операционные магнитные усилители
- •§ 25.4. Трехфазные магнитные усилители
- •1. Перечислите основные типы магнитных усилителей специального назначения.
- •2. Что требуется для повышения быстродействия магнитного усилителя?
- •3. Для выполнения каких функций нужны операционные усилители?
- •Глава 26
- •§ 26.1. Назначение магнитных модуляторов
- •§ 26.2. Магнитные модуляторы с выходным переменным током основной частоты
- •§ 26,3. Магнитные модуляторы с выходным переменным током удвоенной частоты
- •§ 26.4. Магнитные модуляторы с выходным импульсным сигналом
- •§ 26,5. Магнитомодуляционные датчики магнитных величин
- •§ 26.6. Назначение и принцип действия бесконтактных магнитных реле
- •§ 26.7. Характеристики и схемы бесконтактных магнитных реле
- •§ 26.8. Основы расчета и конструирования бесконтактных магнитных реле
- •1. Зачем нужны магнитные модуляторы?
- •2. Что измеряют магнитомодуляционные датчики?
- •3. Принцип действия магнитного реле.
- •Раздел V
- •Глава 27
- •§ 27.1. Достоинства дискретных систем
- •§ 27.2. Электронные коммутаторы
- •§ 27.3. Элементы цифровой техники
- •§ 27.4. Элементы памяти для цифровых систем
- •§ 27.5. Счетчики импульсов
- •§ 27.6. Мультиплексор и демультиплексор
- •Глава 28
- •§ 28.1. Аналого-цифровые преобразователи
- •§ 28.2. Цифро-аналоговые преобразователи
- •§ 28.3. Индикаторные устройства
- •Глава 29
- •§ 29.1. Назначение корректирующих элементов
- •§ 29.2. Операционный усилитель в функциональных схемах
- •1. Зачем нужны корректирующие элементы?
- •2. Для выполнения каких преобразований нужны операционные усилители?
- •3. Как работает компаратор?
§ 28.2. Цифро-аналоговые преобразователи
Цифро-аналоговый преобразователь (ЦАП) предназначен для автоматического преобразования (декодирования) входных величин, представленных числовыми кодами, в соответствующие им значения непрерывно изменяющихся во времени (т. е. аналоговых) величин. Иными словами ЦАП выполняет обратное по сравнению с АЦП преобразование. Выходные физические величины АЦП чаще всего представляют собой электрические напряжения и токи, но это могут быть и временные интервалы, и угловые перемещения, и т. п. В системе автоматики с ЭВМ или микропроцессором удобнее обрабатывать (преобразовывать или передавать) цифровой сигнал, но человеку (оператору) привычнее и удобнее воспринимать именно аналоговые сигналы, соответствующие значениям числовых кодов. Можно сказать, что с помощью АЦП информация вводится в ЭВМ, а с помощью ЦАП информация выводится из ЭВМ для воздействия на управляемый объект и восприятия человеком.
В схемах ЦАП обычно используется представление двоичного числа, состоящего из нескольких разрядов, в виде суммы степеней числа 2. Каждый разряд (если в нем записана единица) преобразуется в аналоговый сигнал, пропорциональный двойке в той степени, каков номер разряда, уменьшенный на единицу. На рис. 28.4 показана простая схема ЦАП, основу которой составляет матрица (набор) резисторов, которые подключаются ко входу операционного усилителя ключами, управляемыми соответствующими разрядами двоичного числа. В качестве ключей могут быть использованы триоды (например МДП-транзисторы).
Если в данном разряде записана «1», то ключ замкнут, если «О» — разомкнут. Коэффициент передачи операционного усилителя равен отношению сопротивления резистора в цепи обратной связи
Схема ЦАП, показанная на рис. 28.5, свободна от указанных недостатков. В этой схеме весовые коэффициенты каждого разряда задаются последовательным делением опорного напряжения с помощью матрицы резисторов. Эта матрица представляет собой многозвенный делитель напряжения и называется резистивной матрицей типа R-2R. В данной схеме ЦАП используются двухпозиционные ключи, которые подсоединяют резисторы 2R либо ко входу опера-
ционного усилителя (при «1» в данном разряде), либо к общему нулевому проводу. Входное сопротивление резистивной матрицы при этом не зависит от положения ключей. Коэффициент передачи между соседними узловыми точками матрицы составляет 0,5. Для схемы ПАП по оис. 28.5 выхолное наппяжение панно
Условное обозначение ЦАП показано на рис. 28.6.
Наибольшее влияние на погрешность ЦАП оказывают отклонения сопротивлений резисторов от их номинальных значений, а также то, что у реального ключа сопротивление в закрытом состоянии не равно бесконечности, а в открытом — не равно нулю. Выпускаемые в интегральном исполнении резистивные матрицы имеют относительную погрешность коэффициента деления порядка сотых долей процента.