
- •§ 20.4. Магнитные пускатели
- •§ 20.5. Автоматические выключатели
- •Глава 21
- •§ 21.1. Назначение электромагнитных исполнительных устройств
- •§ 21.2. Классификация электромагнитов
- •§ 21.3. Порядок проектного расчета электромагнита
- •§ 21.4. Особенности расчета электромагнитов переменного тока
- •§ 21.5. Электромагнитные муфты
- •1. Принцип действия электромагнита.
- •2. Каков порядок расчета электромагнита?
- •3. Как работает электромагнитная муфта?
- •Раздел IV
- •Глава 22
- •§ 22.1. Физические основы работы магнитных усилителей
- •§ 22.2. Принцип действия магнитного усилителя
- •§ 22.3. Основные схемы и параметры нереверсивных магнитных усилителей
- •§ 22.4. Основные характеристики магнитных усилителей
- •§ 22.5. Теория идеального магнитного усилителя
- •§ 22.6, Инерционность идеального магнитного усилителя
- •1. Принцип действия магнитного усилителя.
- •2. Почему в магнитном усилителе выходной сигнал не влияет на входной?
- •3. Какими параметрами характеризуется магнитный усилитель?
- •Глава 23
- •§ 23.1. Назначение и способы введения обратной связи
- •§ 23.2. Однотактный магнитный усилитель с внешней обратной связью
- •§ 23.3. Инерционность магнитного усилителя с обратной связью
- •§ 23.4. Регулировка коэффициента обратной связи
- •§ 23.5. Характеристики реального магнитного усилителя "' с обратной связью ' * ' *
- •§ 23.6. Графическое построение статической характеристики магнитного усилителя с обратной связью
- •§ 23.7. Магнитные усилители с внутренней обратной связью
- •1. Зачем в магнитных усилителях используется обратная связь?
- •2. В чем разница между внешней и внутренней обратной связью?
- •3. Как регулируется коэффициент обратной связи?
- •Глава 24
- •§ 24.1. Статическая характеристика реверсивного (двухтактного) магнитного усилителя
- •§ 24.2. Усилители с выходным переменным током
- •§ 24.3. Реверсивные магнитные усилители с выходным постоянным током
- •§ 24.4. Обратная связь в реверсивных магнитных усилителях
- •§ 24.5. Основы расчета магнитных усилителей
- •1. Зачем нужна обмотка смещения?
- •2. Какой вид имеет статическая характеристика реверсивного магнитного усилителя?
- •3. Какой порядок расчета магнитного усилителя?
- •Глава 25
- •§ 25.1. Многокаскадный магнитный усилитель
- •§ 25.3. Операционные магнитные усилители
- •§ 25.4. Трехфазные магнитные усилители
- •1. Перечислите основные типы магнитных усилителей специального назначения.
- •2. Что требуется для повышения быстродействия магнитного усилителя?
- •3. Для выполнения каких функций нужны операционные усилители?
- •Глава 26
- •§ 26.1. Назначение магнитных модуляторов
- •§ 26.2. Магнитные модуляторы с выходным переменным током основной частоты
- •§ 26,3. Магнитные модуляторы с выходным переменным током удвоенной частоты
- •§ 26.4. Магнитные модуляторы с выходным импульсным сигналом
- •§ 26,5. Магнитомодуляционные датчики магнитных величин
- •§ 26.6. Назначение и принцип действия бесконтактных магнитных реле
- •§ 26.7. Характеристики и схемы бесконтактных магнитных реле
- •§ 26.8. Основы расчета и конструирования бесконтактных магнитных реле
- •1. Зачем нужны магнитные модуляторы?
- •2. Что измеряют магнитомодуляционные датчики?
- •3. Принцип действия магнитного реле.
- •Раздел V
- •Глава 27
- •§ 27.1. Достоинства дискретных систем
- •§ 27.2. Электронные коммутаторы
- •§ 27.3. Элементы цифровой техники
- •§ 27.4. Элементы памяти для цифровых систем
- •§ 27.5. Счетчики импульсов
- •§ 27.6. Мультиплексор и демультиплексор
- •Глава 28
- •§ 28.1. Аналого-цифровые преобразователи
- •§ 28.2. Цифро-аналоговые преобразователи
- •§ 28.3. Индикаторные устройства
- •Глава 29
- •§ 29.1. Назначение корректирующих элементов
- •§ 29.2. Операционный усилитель в функциональных схемах
- •1. Зачем нужны корректирующие элементы?
- •2. Для выполнения каких преобразований нужны операционные усилители?
- •3. Как работает компаратор?
§ 25.3. Операционные магнитные усилители
Операционные усилители предназначены для использования в измерительных, моделирующих и вычислительных системах автоматики. Славное требование, предъявляемое к ним, — это высокая
стабильность параметров: постоянство коэффициента усиления и отсутствие дрейфа нуля. Наиболее широко применяются полупроводниковые операционные усилители. Однако и магнитные операционные усилители имеют определенные достоинства. В частности, с помощью магнитного усилителя значительно проще выполнять такую операцию, как суммирование сигналов.
Пусть магнитный усилитель имеет несколько обмоток управления с одинаковым числом витков wr Тогда магнитный поток управления будет создаваться суммарным действием всех токов, протекающих по п обмоткам управления:
Точность суммирования для обычного усилителя с несколькими обмотками управления составляет несколько процентов. Для получения высокой точности (сотые доли процента) применяют специальные операционные суммирующие усилители. Высокая точность суммирования сигналов в таких усилителях достигается за счет использования отрицательной обратной связи, охватывающей весь усилитель. Так как при этом уменьшается коэффициент усиления, то для компенсации такого уменьшения применяют положительную обратную связь или многокаскадную схему.
Структурная схема суммирующего операционного магнитного усилителя показана на рис. 25.6. На вход усилителя с коэффициентом усиления по току К, поступают входные сигналы /у], /у2, ..., 1У„ и сигнал отрицательной обратной связи, /оос, представляющий собой выходной ток /вых (обычно не весь ток, а его часть /оос = P/^). В соответствии с уравнением из § 1.5 для отрицательной обратной связи имеем коэффициент передачи
При достаточно большом значении К„ непостоянство коэффициента передачи К суммирующего усилителя будет характеризоваться сотыми долями процента, т. е. выходной сигнал будет достаточно строго пропорционален сумме входных сигналов.
Операционные магнитные усилители могут использоваться в системах автоматики для разных целей. Развязыва-
стью
С При большом значении К,
напряжение
на нагрузке будет пропорционально
интегралу сигнала датчика:
Развязывающий усилитель обеспечивает согласование выходного сопротивления датчика с входным сопротивлением, которое является нагрузкой датчика. Структурная схема развязывающего усилителя показана на рис. 25.7, а. Это как бы суммирующий усилитель с одной входной обмоткой. Если эта обмотка включена между датчиком с выходным напряжением Us и нагрузкой К„, то входной ток усилителя
При высоком значении К, входное сопротивление будет достаточно большим. Развязывающий усилитель легко преобразуется в масштабный усилитель, изменяющий сигнал датчика в определенное количество раз. В масштабном усилителе (рис. 25.7, 6) на вход подается не все напряжение нагрузки, а его часть (с помощью делителя напряжения на резисторах /J, и R2).
На базе операционного усилителя с одной входной обмоткой строятся схемы интегрирующего и дифференцирующего усилителей.
В интегрирующем операционном усилителе (рис. 25.8, а) сигнал отрицательной обратной связи вводится через конденсатор с емко-
В дифференцирующем операционном усилителе (рис. 25.8, б) емкость С включена не в цепь обратной связи, а на вход. В этом случае напряжение на нагрузке будет пропорционально производной сигнала датчика:
На базе суммирующего усилителя с несколькими входными обмотками можно выполнять также операции умножения и деления. Для этого необходимо подавать в обмотки управления токи, пропорциональные логарифмам входных сигналов.