
- •§ 20.4. Магнитные пускатели
- •§ 20.5. Автоматические выключатели
- •Глава 21
- •§ 21.1. Назначение электромагнитных исполнительных устройств
- •§ 21.2. Классификация электромагнитов
- •§ 21.3. Порядок проектного расчета электромагнита
- •§ 21.4. Особенности расчета электромагнитов переменного тока
- •§ 21.5. Электромагнитные муфты
- •1. Принцип действия электромагнита.
- •2. Каков порядок расчета электромагнита?
- •3. Как работает электромагнитная муфта?
- •Раздел IV
- •Глава 22
- •§ 22.1. Физические основы работы магнитных усилителей
- •§ 22.2. Принцип действия магнитного усилителя
- •§ 22.3. Основные схемы и параметры нереверсивных магнитных усилителей
- •§ 22.4. Основные характеристики магнитных усилителей
- •§ 22.5. Теория идеального магнитного усилителя
- •§ 22.6, Инерционность идеального магнитного усилителя
- •1. Принцип действия магнитного усилителя.
- •2. Почему в магнитном усилителе выходной сигнал не влияет на входной?
- •3. Какими параметрами характеризуется магнитный усилитель?
- •Глава 23
- •§ 23.1. Назначение и способы введения обратной связи
- •§ 23.2. Однотактный магнитный усилитель с внешней обратной связью
- •§ 23.3. Инерционность магнитного усилителя с обратной связью
- •§ 23.4. Регулировка коэффициента обратной связи
- •§ 23.5. Характеристики реального магнитного усилителя "' с обратной связью ' * ' *
- •§ 23.6. Графическое построение статической характеристики магнитного усилителя с обратной связью
- •§ 23.7. Магнитные усилители с внутренней обратной связью
- •1. Зачем в магнитных усилителях используется обратная связь?
- •2. В чем разница между внешней и внутренней обратной связью?
- •3. Как регулируется коэффициент обратной связи?
- •Глава 24
- •§ 24.1. Статическая характеристика реверсивного (двухтактного) магнитного усилителя
- •§ 24.2. Усилители с выходным переменным током
- •§ 24.3. Реверсивные магнитные усилители с выходным постоянным током
- •§ 24.4. Обратная связь в реверсивных магнитных усилителях
- •§ 24.5. Основы расчета магнитных усилителей
- •1. Зачем нужна обмотка смещения?
- •2. Какой вид имеет статическая характеристика реверсивного магнитного усилителя?
- •3. Какой порядок расчета магнитного усилителя?
- •Глава 25
- •§ 25.1. Многокаскадный магнитный усилитель
- •§ 25.3. Операционные магнитные усилители
- •§ 25.4. Трехфазные магнитные усилители
- •1. Перечислите основные типы магнитных усилителей специального назначения.
- •2. Что требуется для повышения быстродействия магнитного усилителя?
- •3. Для выполнения каких функций нужны операционные усилители?
- •Глава 26
- •§ 26.1. Назначение магнитных модуляторов
- •§ 26.2. Магнитные модуляторы с выходным переменным током основной частоты
- •§ 26,3. Магнитные модуляторы с выходным переменным током удвоенной частоты
- •§ 26.4. Магнитные модуляторы с выходным импульсным сигналом
- •§ 26,5. Магнитомодуляционные датчики магнитных величин
- •§ 26.6. Назначение и принцип действия бесконтактных магнитных реле
- •§ 26.7. Характеристики и схемы бесконтактных магнитных реле
- •§ 26.8. Основы расчета и конструирования бесконтактных магнитных реле
- •1. Зачем нужны магнитные модуляторы?
- •2. Что измеряют магнитомодуляционные датчики?
- •3. Принцип действия магнитного реле.
- •Раздел V
- •Глава 27
- •§ 27.1. Достоинства дискретных систем
- •§ 27.2. Электронные коммутаторы
- •§ 27.3. Элементы цифровой техники
- •§ 27.4. Элементы памяти для цифровых систем
- •§ 27.5. Счетчики импульсов
- •§ 27.6. Мультиплексор и демультиплексор
- •Глава 28
- •§ 28.1. Аналого-цифровые преобразователи
- •§ 28.2. Цифро-аналоговые преобразователи
- •§ 28.3. Индикаторные устройства
- •Глава 29
- •§ 29.1. Назначение корректирующих элементов
- •§ 29.2. Операционный усилитель в функциональных схемах
- •1. Зачем нужны корректирующие элементы?
- •2. Для выполнения каких преобразований нужны операционные усилители?
- •3. Как работает компаратор?
§ 22.4. Основные характеристики магнитных усилителей
Основной характеристикой магнитного усилителя является зависимость действующего или среднего значения тока в нагрузке от тока управления: /н=/(/у). Графическое изображение такой зависимости называется статической характеристикой вход-выход. Для всех рассмотренных выше схем магнитных усилителей зависимость магнитной проницаемости и индуктивности рабочей обмотки от тока управления показана на рис. 22.14. При отсутствии управляющего сигнала (/у = 0) эти величины имеют максимальное значение. Если подадим в обмотку управления постоянный ток /у, то в сердечнике создается постоянный магнитный поток, накладывающийся на переменный поток, созданный рабочей обмоткой. По мере увеличения входного сигнала /у из-за нелинейности характеристики намагничивания происходит насыщение сердечника.
Это приводит к уменьшению магнитной проницаемости ц, а следовательно, и индуктивности рабочей обмотки Lp. Направление (полярность) тока управления не влияет на ц и Lp. Вид статической характеристики вход-выход зависит от того, как включена нагрузка: последовательно или параллельно рабочей обмотке.
На рис. 22.15, а показана статическая характеристика для схем магнитных усилителей (см. рис. 22.7, 22.8, 22.10, 22.13). Здесь-/„ — ток холостого хода усилителя (подмагничивающее поле отсутству-
Наряду с коэффициентом кратности тока магнитный усилитель характеризуется следующими параметрами: коэффициентом усиления, чувствительностью, максимальной мощностью в нагрузке, КПД рабочей цепи, постоянной времени, добротностью.
Рассмотрим коротко эти параметры. Коэффициент усиления — это отношение приращения тока, напряжения или мощности в нагрузке к приращению соответствующего параметра в цепи управления.
Коэффициент усиления по току
Поскольку статическая характеристика магнитного усилителя нелинейна, коэффициенты усиления по току, напряжению и мощности не являются постоянными величинами. Поэтому различают максимальные значения k,, kv, kp и их значения, соответствующие заданной выходной мощности усилителя.
Магнитные усилители по сравнению с другими типами усилителей обладают таким существенным преимуществом, как высокая стабильность во времени параметров и статической характеристики. Имея практически неограниченный срок службы, магнитные усилители не требуют регламентных работ и могут использоваться во взрыво- или пожароопасных условиях, а также при наличии радиоактивного излучения.
Максимальная мощность магнитных усилителей достигает сотен киловатт. Например, на Московском трансформаторном заводе еще в 1933 г. были изготовлены магнитные усилители мощностью 800 кВт для автоматического регулирования частоты вращения мощного асинхронного двигателя. Коэффициент усиления по мощности 100-ваттного магнитного усилителя при частоте питания 50 Гц обычно составляет 50—200. Для более мощных усилителей этот коэффициент увеличивается.
КПД простейших нереверсивных магнитных усилителей обычно лежит в пределах от 0,6 до 0,98. Коэффициент кратности магнитных усилителей в значительной степени зависит от материала сердечника. Для магнитных усилителей с сердечниками из трансформаторной стали .£=5-^40, а с сердечниками из сплавов высокой магнитной проницаемости К- 100-^200.
Минимальное значение усиливаемой мощности составляет 10"4—10'1 Вт для сердечников из трансформаторной стали и 10"8—10"6 Вт для сердечников из сплавов высокой проницаемости.