
- •1.Основные метрологические понятия и определения
- •2.Измерения и их классификация.
- •3.Единицы измерений: основные и дополнительные, кратные и дольные, производные.
- •Внесистемные (специальные) единицы измерений. Уровни передачи.
- •Средства измерений. Классификация средств измерений. Условные обозначения.
- •6. Методы и принципы измерений. Объекты и субъекты измерений.
- •7. Погрешности измерений и их классификация.
- •8. Вольтметры и амперметры для измерения постоянных напряжений и токов.
- •9. Расширение пределов измерения вольтметров и амперметров.
- •10. Вольтметры и амперметры для измерения переменных напряжений и токов.
- •11. Детекторы. Определение детектора, принципиальная схема детектора средневыпрямленных значений, принцип действия, временные диаграммы.
- •12. Общая структурная схема цифрового вольтметра. Методы преобразования напряжения в цифровой вид.
- •13. Измерение напряжения при помощи цифрового вольтметра с времяимпульсным преобразованием. Назначение блоков и принцип действия прибора.
- •14. Измерение уровней при помощи широкополосного измерителя уровня (шиу). Способы включения шиу.
- •15. Измерение уровней при помощи избирательного измерителя уровня (ииу).
- •16. Измерительные генераторы. Классификация измерительных генераторов. Общая структурная схема генератора низких частот.
- •Генераторы низких частот
- •17. Измерительные генераторы синусоидальных сигналов rc-типа.
- •18. Измерительные генераторы синусоидальных сигналов lc-типа.
- •19. Измерительные генераторы синусоидальных сигналов на биениях.
- •20. Измерительные генераторы импульсных сигналов. Структурная схема генератора импульсных сигналов, назначение блоков прибора.
- •21. Синтезаторы частоты. Структурная схема синтезатора частоты, назначение блоков, принцип его действия.
- •22. Схема формирования сетки частот синтезатором частот.
- •23. Генераторы широкого диапазона частот. Структурная схема генератора широкого диапазона частот. Определение прибора, назначение блоков прибора.
- •24. Принцип получения изображения на экране электронного осциллографа. Определение развертки.
- •25. Назначение канала «y» электронного осциллографа. Состав и назначение блоков канала «y».
- •26. Назначение канала «X» электронного осциллографа. Состав и назначение блоков канала «X».
- •27. Назначение канала «z» электронного осциллографа. Измерительные блоки (калибраторы) в электронном осциллографе.
- •28. Структурная схема генератора линейного напряжения в электронном осциллографе, определение, состав и назначение блоков генератора линейного напряжения.
- •29. Синхронизация генератора линейного напряжения. Определение синхронизации, виды синхронизации и ее применение в электронном осциллографе.
- •30. Режимы работы генератора развертки (непрерывный, ждущий, однократный), условия применения их в электронном осциллографе.
- •31. Виды разверток в электронном осциллографе (линейная, синусоидальная, круговая).
- •32. Получение и применение линейной развертки в электронном осциллографе.
- •33. Получение и применение синусоидальной развертки в электронном осциллографе. Фигуры Лиссажу.
- •34. Получение и применение круговой (эллиптической) развертки в электронном осциллографе. Схема получения круговой развертки при помощи фазосдвигающей цепи rc.
- •35. Измерение частоты при помощи цифрового частотомера, определение прибора, структурная схема, назначение блоков, принцип измерения частоты, временные диаграммы.
- •36. Измерение периода при помощи цифрового частотомера, определение прибора, структурная схема, назначение блоков, принцип измерения периода, временные диаграммы.
- •37. Измерение сопротивлений. Косвенный метод измерения сопротивлений (с помощью амперметра и вольтметра).
- •38. Схема омметра с последовательным включением измеряемого сопротивления. Определение омметра, устройство, принцип калибровки и измерения сопротивлений.
- •39. Схема омметра с параллельным включением измеряемого сопротивления. Определение омметра, устройство, принцип калибровки и измерения сопротивлений.
- •40. Принципиальная схема моста постоянного тока. Назначение, устройство и принцип его действия. Условие равновесия (вывод формул).
- •41.Принципиальная схема моста переменного тока. Назначение, устройство и принцип его действия. Условия равновесия (вывод формул).
- •42. Измерение входного сопротивления цепей. Режимы работы электрических цепей, методы измерения входного сопротивления
- •43. Схема измерения модуля входного сопротивления методом сравнения. Понятие коэффициента отражения и затухания несогласованности.
- •44. Заземление. Виды заземлений, их назначение, нормы сопротивлений заземлений.
- •45. Измерение сопротивлений заземлений методом амперметра-вольтметра.
- •46. Измерение сопротивлений заземлений методом трех измерений.
- •47. Измерение сопротивлений заземлений методом компенсации.
- •48. Параметры, характеризующие нелинейные искажения: коэффициент гармоник, коэффициент нелинейных искажений, затухание нелинейности.
- •49. Измерение нелинейных искажений четырехполюсников методом подавления основной гармоники.
- •50. Измерение нелинейных искажений четырехполюсников методом анализа напряжений.
- •51. Измерение амплитудно-частотной характеристики четырехполюсника (ачх) при помощи характериографа. Структурная схема, назначение, принцип действия прибора
- •52. Амплитудная характеристика. Определение коэффициента нелинейных искажений по амплитудной характеристике четырехполюсника
- •53. Схема для измерения амплитудной характеристики четырехполюсника, принцип измерения
- •54. Помехи и шумы в каналах связи. Измерение напряжения помех при помощи псофометра
- •55. Измерение параметров взаимного влияния. Измерение переходного затухания на ближнем и дальнем конце.
- •57. Порядок проведения обработки результатов измерений параметров линий связи: расчет параметров, сравнение их с нормой.
- •58. Пояснить методику измерения параметров кабельной линии связи прибором ирк-про
- •59.Виды повреждений на линиях связи.
- •60. Определение характера повреждения на линиях связи.
- •61. Импульсный метод измерений на линиях связи
- •62. Структурная схема импульсного прибора, состав и назначение блоков, принцип действия
48. Параметры, характеризующие нелинейные искажения: коэффициент гармоник, коэффициент нелинейных искажений, затухание нелинейности.
Из курсов ТЭЦ и ТЭС мы знаем, что электрические цепи делятся на линейные, нелинейные и параметрические. Последние два типа цепей отличаются от линейных тем свойством, что могут создавать новые гармонические составляющие в спектре отклика по сравнению со спектром входного сигнала.
Нелинейное преобразование сигнала может быть желательным и полезным (например, при детектировании), а может быть вредным, сопутствующим (например, в усилителях). В этом случае, когда это явление не используется в устройстве, содержащем данную цепь, оно весьма нежелательно, так как часто создает вредные побочные эффекты. Поэтому форма сигнала на выходе этих устройств будет отличаться от формы сигнала на их входе. Изменение формы сигнала называется нелинейным искажением.
Причина нелинейных искажений заключается в том, что при подаче на вход гармонического сигнала частотой f на выходе появляется сигнал, содержащий постоянную составляющую, основную частоту и высшие гармоники с частотами 2f, 3f, 4f и т.д. Амплитуды высших гармоник с увеличением их номеров быстро убывают. Определяющими обычно бывают вторая и третья гармоники.
Источником нелинейных искажений являются элементы цепей, у которых ток не пропорционален приложенному напряжению, т.е. имеющие нелинейную вольтамперную характеристику. Это, как правило, электронные лампы, транзисторы, диоды, катушки c ферромагнитными сердечниками.
Необходимость измерения нелинейных искажений связана с исследованием параметров усилителей и генераторов синусоидальных колебаний.
Нелинейные искажения представляют собой сложной явление, зависящее от многих параметров: состава электрической цепи, ее амплитудно-частотной характеристики, формы сигнала, его амплитуды и т. п. С увеличением амплитуды нелинейные искажения увеличиваются. Обычно при увеличении частоты нелинейные искажения в усилителе также увеличиваются.
Нелинейные искажения оцениваются коэффициентом гармоник КГ, а также коэффициентом нелинейных искажений КН.
Коэффициент гармоник КГ определяется как отношение среднеквадратического (действующего) значения напряжения суммы всех гармоник сигнала, кроме первой, к среднеквадратическому (действующему) значению напряжения первой гармоники по формуле (34):
где
U1,
U2,
U3,
… Un – среднеквадратические значения
напряжения отдельных гармоник выходного
сигнала.
Коэффициент КГ характеризует отличие формы данного периодического сигнала от гармонической.
Нетрудно увидеть, что при отсутствии в выходном сигнале высших гармоник, КГ = 0, т.е. синусоидальный сигнал со входа на выход передается без искажений.
Коэффициент нелинейных искажений Кн определяется, как отношение среднеквадратического (действующего) значения напряжения высших гармоник к среднеквадратическому (действующему) значению всего сигнала по формуле (35):
Самыми распространенными одночастотными методами измерения являются:
1. Метод подавления основной гармоники.
2. Метод анализа напряжений.