
- •1)Сформулировать понятие множества. Изложить действия над множествами, разъяснить их суть и перечислить их свойства.
- •2)Определить основные элементы математической логики. Записать формулы логики, сформулировать законы алгебраической логики.
- •16. Дать определения минора порядка k для произвольной матрицы, ранга и базисного минора матрицы. Изложить способы нахождения ранга матрицы
- •19. Сформулировать теорему Крамера. Записать формулы Крамера. Раскрыть сущность решения систем линейных алгебраических уравнений методом Крамера.
- •21) Дать понятие вектора на плоскости и в пространстве, определить линейные операции над векторами в геометрической форме, изложить их свойства.
- •25) Дать определение векторного произведения векторов: изложить его свойства, геометрический смысл, вычисление в координатной форме.
- •26) Дать определение смешанного произведения векторов, изложить его свойства, геометрический смысл, вычисление в координатной форме.
- •27) Дать понятие числовой функции, ее области определения и области значений. Определить способы задания функции. Сформулировать простейшие свойства.Функций .
- •28) Дать понятие обратной и сложной функции, неявно заданной функции, параметрически заданной функции.
- •31. Дать определение окружности, записать ее геометрическое, каноническое и нормальное уравнения, изложить геометрические свойства.
- •36. Изложить способы задания плоскости в пространстве и вывести различные виды уравнений плоскости в зависимости от способа ее задания..
- •39. Разъяснить критерии взаимного расположения прямых в пространстве и записать различные условия их взаимного расположения.
- •40. Разъяснить критерии взаимного расположения прямой и плоскости. Дать определение угла между прямой и плоскостью, расстояния от точки до плоскости, записать соответствующие формулы..
- •41. Дать определение числовой последовательности, изложить ее свойства. Перечислить виды последовательностей. И способы задания числовой последовательности.
- •42. Дать определение арифметической прогрессия и изложить ее свойства
- •43. Дать определение геометрической прогрессия и изложить ее свойства.
- •44. Дать понятие предела последовательности. Изложить критерий Коши и Сформулировать теоремы о свойствах предела последовательности.
- •45. Дать понятие бесконечно больших и бесконечно малых последовательностей, изложить их свойства.
- •46. Дать понятие предела функции в точке. Изложить критерий Гейне и критерий Коши. Сформулировать теоремы о свойствах пределов функций.
- •47.Дать понятие предела функции на бесконечности и односторонних пределов. Раскрыть суть вычисления пределов как раскрытия неопределенностей. Записать формулы замечательных пределов..
- •48) Определить понятия бесконечно больших и бесконечно малых функций, эквивалентности бесконечно малых функций. Записать формулы эквивалентных бесконечно малых функций.
- •49. Дать определения непрерывность функции в точке. Изложить свойства функций, непрерывных в точке.
- •50) Дать определение точки разрыва функции. Сформулировать условие непрерывности функции в точке. Изложить классификацию разрывов функции.
- •51) Дать определение непрерывности функции на отрезке. Сформулировать теоремы о функциях, непрерывных на отрезке.
- •52) Дать определение асимптоты графика функции. Назвать их виды, сформулировать условия существования...
- •53) Дать определение производной функции. Сформулировать и доказать основное свойство производной функции. Сформулировать правила дифференцирования и записать соответствующие формулы.
- •54) Раскрыть механический (физический) и геометрический смысл производной. Записать и разъяснить уравнения касательной и нормали к кривой.
- •57) Сформулировать и доказать теоремы Ролля, Лагранжа и Коши и их следствия.
- •58) Дать понятие о неопределенностях при вычислении пределов и назвать их виды. Сформулировать правило Лопиталя и рассказать об особенностях его применения..
- •59) Дать определение дифференциала функции и раскрыть его геометрический смысл. Сформулировать свойства дифференциала и записать соответствующие формулы..
- •60) . Записать формулы, используемые в приближенных вычислениях с помощью дифференциала и. Объяснить их. Привести соответствующие примеры.
51) Дать определение непрерывности функции на отрезке. Сформулировать теоремы о функциях, непрерывных на отрезке.
Функция f(x) называется непрерывной на отрезке [a, b], если она непрерывна на интервале (a, b), непрерывна справа в точке a и непрерывна слева в точке b.
Теорема 1 (об ограниченности непрерывной функции). Если функция f(x) непрерывна на отрезке [a, b], то она ограничена на этом отрезке, т.е. существует такое число C> 0, что "x О [a, b] выполняется неравенство |f(x)| ≤ C.
Теорема 2 (Вейерштрасс). Если функция f(x) непрерывна на отрезке [a, b], то она достигает на этом отрезке своего наибольшего значения M и наименьшего значения m, т.е. существуют точки α, β О [a, b] такие, что m = f(α) ≤ f(x) ≤ f(β) = M для всех x О [a, b]
Теорема 3 (о существовании нуля). Если функция f(x) непрерывна на отрезке [a, b] и на концах отрезка принимает ненулевые значения разных знаков, то на интервале (a, b) найдется по крайней мере одна точка ξ в которой f(ξ) = 0.
Теорема 4 (Больцано–Коши). Если функция f(x) непрерывна на отрезке [a, b], то она принимает на (a,b) все промежуточные значения между f(a) и f(b).
52) Дать определение асимптоты графика функции. Назвать их виды, сформулировать условия существования...
Геометрический смысл производной. На графике функции выбирается абсцисса x0 и вычисляется соответствующая ордината f(x0). В окрестности точки x0 выбирается произвольная точка x. Через соответствующие точки на графике функции F проводится секущая (первая светло-серая линия C5). Расстояние Δx = x — x0 устремляется к нулю, в результате секущая переходит в касательную (постепенно темнеющие линии C5 — C1). Тангенс угла α наклона этой касательной — и есть производная в точке x0.
Если
функция
имеет
конечную производную в точке x0,
то в окрестности U(x0)
её можно приблизить линейной функцией
Функция fl называется касательной к f в точке x0. Число f'(x0) является угловым коэффициентом или тангенсом угла наклона касательной прямой.
Скорость изменения функции
Пусть s = s(t) — закон прямолинейного движения. Тогда v(t0) = s'(t0) выражает мгновенную скорость движения в момент времени t0. Вторая производная a(t0) = s''(t0) выражает мгновенное ускорение в момент времени t0.
Вообще производная функции y = f(x) в точке x0 выражает скорость изменения функции в точке x0, то есть скорость протекания процесса, описанного зависимостью y = f(x).
уравнение
касательной
|
Уравнение
нормали
53) Дать определение производной функции. Сформулировать и доказать основное свойство производной функции. Сформулировать правила дифференцирования и записать соответствующие формулы.
Производной
функции
в точке
называется предел отношения приращения
функции к приращению аргумента, когда
последнее стремится к нулю, при условии,
что предел существует.
Пусть
– дифференцируемые функции. Справедливы
формулы:
где
где
Функция, имеющая производную в точке, называется дифференцируемой в этой точке. Операция нахождения производной называется дифференцированием.
Производная
функции в точке – это число. Если функция
дифференцируема на некотором множестве
X из ее области определения, то
также является функцией (ее обозначают
также
).