
- •Вопросы по дисциплине «Теоретические основы электротехники»
- •Законы электрических цепей.
- •Цепи синусоидального тока.
- •Индуктивный элемент
- •Емкостный элемент
- •Трехфазные цепи.
- •Нелинейные электрические и магнитные цепи.
- •1.2Вопросы по дисциплине «Электрические машины»
- •(5) Типы электрических машин
- •(6) Характеристики синхронных эл. Машин
- •(7) Трансформаторы и автотрансформаторы
- •1.(8)Основы теории полупроводников, диоды, биполярные и полевые транзисторы
- •Транзисторы
- •Выпрямители
- •Фильтры
- •Стабилизаторы напряжения
- •(10) Измерение активной мощности в трехфазных цепях. Схемы включения. Особенности.
- •1. (11)Абсолютная и относительная погрешность
- •2. (12)Статические методы обработки результатов эксперимента
- •3. (13)Правовые нормы стандартизации
- •4. (14)Цели и объекты сертификации качества продукции
- •Совместная работа тэс, аэс, гэс в энергосистеме.
- •(16) Паротурбинная установка.
- •(17) Нетрадиционные и возобновляемые источники энергии.
- •(18) Принципиальные схемы аэс: одноконтурная, двухконтурная, трехконтурная.
- •5. (19) Особенности режимов работы гэс и гаэс
- •1.6Вопросы по дисциплине «Переходные процессы в электроэнергетических системах»
- •Устойчивость в электрических системах и методы ее исследования.
- •Простейшая оценка статической устойчивости. Практические критерии устойчивости.
- •Простейшая оценка динамической устойчивости.
- •Выпадение из синхронизма синхронной машины. Установившийся асинхронный режим см. Ресинхронизация генераторов.
- •(25)Важнейшие понятия бжд: среда обитания, деятельность, опасность, риск и безопасность. Опасные и вредные производственные факторы гэс.
- •(26)Классификация средств защиты, используемых в электроустановках. Общие правила пользования средствами защиты. Основные и дополнительные изолирующие электрозащитные средства.
- •Классификация и общие требования
- •(27)Организационные мероприятия. Ответственные за безопасность проведения работ, их права и обязанности.
- •Организационные мероприятия
- •(28)Технические мероприятия, обеспечивающие безопасность работ со снятием напряжения.
- •1.8Вопросы по дисциплине «Электрические станции и подстанции»
- •Гидрогенераторы: типы и конструкции основных узлов.
- •Пуск гидрогенератора, способы включения в сеть. Режимы. Регулирование активной и реактивной мощность гидрогенераторов.
- •Трансформаторы: типы и конструкции. Условия параллельной работы трансформаторов.
- •Короткое замыкание.
- •Механизмы и оборудование собственных нужд гэс (состав, назначение, режимы работы). Основные агрегатные потребители и станционные системы, обеспечивающие технологические процессы на гэс.
- •Установки постоянного тока с аккумуляторными батареями. Схемные решения систем постоянного оперативного тока (сопт).
- •Требования, предъявляемые к главным схемам гэс. Структурные схемы гэс. Варианты схем ру повышенного напряжения гэс с круэ.
- •(35) Что относится к гидромеханическому оборудованию. Основные требования к гмо.
- •(36) Назначение масляного хозяйства гс. Масла, применяемые на энергетических предприятиях.
- •(37) Назначение систем технического водоснабжения гэс, основные потребители.
- •(38)Назначение пневматического хозяйства гэс, основные потребители высокого и низкого давления. Требования к сжатому воздуху (способы очистки и осушки).
- •(39) Пропускная способность электропередач и факторы её определяющие.
- •2. (40) Режимы нейтрали электрических сетей. Контуры заземлений. Защитные заземления и зануления электрооборудования.
- •Эу делятся в зависимости от режима работы нейтрали:
- •3. (41) Режимы выдачи мощности электростанций. Взаимосвязь балансов активной и реактивной мощностей, частоты и напряжения в ээс. Качество электрической энергии.
- •(42) Назначение релейной защиты. Требования, предъявляемые к релейной защите. Классификация реле. Классификация защит.
- •(44) Защита синхронных генераторов. Принцип действия дифференциальной защиты генераторов.
- •(45) Защиты трансформаторов. Контроль изоляции высоковольтных вводов.
- •2.Газовая защита тр (АвтоТр) (область применения, назначение, принцип действия)
- •3. Токовая отсечка
- •5 .(46)Защиты линий электропередачи. Принцип действия дифференциально-фазной высокочастотной защиты.
- •Требования к системам электроснабжения. Уровни системы электроснабжения, группы потребителей.
- •1. (49) Воздушные и вакуумные высоковольтные выключатели (назначение, конструкция, особенности гашения дуги, достоинства и недостатки)
- •2. (50) Масляные и элегазовые высоковольтные выключатели(назначение, конструкция, особенности гашения дуги, достоинства и недостатки).
- •3. (51) Конструкция и принцип действия высоковольтных аппаратов применяемых для защиты электрооборудования от атмосферных и коммутационных перенапряжений
- •4.Назначение,конструкция и принцип действия разъединителей, отделителей, короткозамыкателей.
- •(53) Закон Бернулли и его следствие
- •2. (54) Физические основы кавитации
- •(55) Типы гидроэнергетических установок (гэс, гаэс, пэс, нс). Основные параметры гидротурбин.
- •Основные параметры гидротурбин.
- •(56) Классификация гидротурбин (класс, тип, конструктивная схема).
- •(58) Основные рабочие органы гидротурбинных установок (конструкция, назначение).
- •(58) Характерисики турбин. Гух. Сущность явления кавитации в гидротурбинах.
- •(59) Регулирование расхода и мощности турбины. Потери энергии в проточном тракте турбины. Отсасывающие трубы гидротурбин.
- •1.16Вопросы по дисциплине «Гидротехнические сооружения»
- •Гидроузлы энергетического назначения – состав сооружений, их компоновка. Схема возведения напорного сооружения без отвода реки из бытового русла.
- •Плотины из грунтовых материалов – типы и виды противофильтрационных элементов плотин, расчет устойчивости откосов грунтовых плотин.
- •Виды бетонных плотин – конструкции, особенности работы плотин разного типа. Бетонные гравитационные плотины
- •Общие сведения о бетонных арочных плотинах.
- •Нагрузки и воздействия на гидротехнические сооружения. Определение их нормативных и расчетных значений. Расчетные сочетания нагрузок и воздействий.
- •Гидротехнические бетоны - марки и классы бетона, зонирование бетона в гидросооружениях.
- •Основные положения расчета гидротехнических сооружений по методу предельных состояний. Расчет на устойчивость от плоскости сдвига.
- •Фильтрация воды под бетонными плотинами на нескальных основаниях. Эпюра противодавления на подошву плотины с различными противофильтрационными устройствами.
- •Обеспечение безопасности гидротехнических сооружений. Контроль состояния гтс. Декларация безопасности гтс. Критерии безопасности гтс.
5. (19) Особенности режимов работы гэс и гаэс
Гидроаккумулирующая электростанция (ГАЭС) — гидроэлектростанция, используемая для выравнивания суточной неоднородности графика нагрузки.
Принцип работы. ГАЭС использует в своей работе либо комплекс генераторов и насосов, либо обратимые гидроэлектроагрегаты, которые способны работать как в режиме генераторов, так и в режиме насосов. Во время ночного провала энергопотребления ГАЭС получает из энергосети дешёвую электроэнергию и расходует её на перекачку воды в верхний бьеф (насосный режим). Во время утреннего и вечернего пиков энергопотребления ГАЭС сбрасывает воду из верхнего бьефа в нижний, вырабатывает при этом дорогую пиковую электроэнергию , которую отдаёт в энергосеть (генераторный режим).
В крупных энергосистемах большую долю могут составлять мощности тепловых и атомных электростанций, которые не могут быстро снижать выработку электроэнергии при ночном снижении энергопотребления или же делают это с большими потерями. Этот факт приводит к установлению существенно большей коммерческой стоимости пиковой электроэнергии в энергосистеме, по сравнению со стоимостью электроэнергии, вырабатываемой в ночной период. В таких условиях использование ГАЭС экономически эффективно.
Гидроэлектростанции. Важнейшей эксплуатационной особенностью является изменчивость объема выдачи ЭЭ вследствие изменчивости естественного режима стока.
-
ГЭС без регулирования
Работают в режиме водотока zВБ = НПУ. Мощность определяется значением бытовых расходов. Такие ГЭС должны работать в базовой части суточного графика нагрузки, так как при работе в пиковой части необходимы холостые сбросы. Холостые сбросы при работе в базовой части могут возникнуть при избыточной приточности в многоводные периоды. Такая ГЭС не имеет резервов.
-
ГЭС с суточным регулированием
При таком регулировании уменьшаются холостые сбросы. ГЭС может нести частотный (нагрузочный) резерв. В маловодный период целесообразно работать в пиковой части суточного графика нагрузки, в средневодный – в полупиковой, в многоводный – в базе.
-
ГЭС годичного регулирования
В период сработки (зимнее межень) – работает в пиковой части графика нагрузки.
В период заполнения – работа в базе с максимальными мощностями.
При заполненном водохранилище работает на бытовом стоке (летнее-осенняя межень) - перемещается в полупиковую или пиковую часть графика нагрзуки.
Холостые сбросы возможны в зависимости от приточности.
-
ГЭС многолетнего регулирования
Такая ГЭС может вести и суточное и годичное регулирование. В общем случае должна работать в пиковой части графика нагрузки в течение всего года. Только в многоводны годы, когда многолетняя часть объема водохранилища заполняется может работать в базовой части.
1.6Вопросы по дисциплине «Переходные процессы в электроэнергетических системах»
-
Параметры синхронной машины для токов обратной и нулевой последовательности. Схемы прямой, обратной и нулевой последовательностей
Сопротивления элементов сети отдельных последовательностей:
Если
магнитная связь между фазами элемента
сети отсутствует, то можно для активных,
индуктивных и полных сопротивлений для
отдельных последовательностей записать:;
;
.
Для
элементов с магнитной связью
(трансформаторы, автотрансформаторы,
воздушные линии, кабели, реакторы)
запишем: ;
;
.
Сопротивления нулевой последовательности резко отличаются.
Параметры синхронной машины для токов обратной и нулевой последовательности:
При
практических расчетах для СМ без
демпферных обмоток:
.
Для
СМ с демпферными обмотками используется
выражение: .
В качестве приближенных соотношений можно принять:
–для
СМ без демпферных обмоток
;
–для
ТГ и СМ с демпферными обмотками в обеих
осях
.
При
приближенных расчетах для ТГ и СМ с
продольно-поперечной демпферной обмоткой
принимают
.
Значение
для СМ колеблется в пределах
.
Схема прямой и обратной последовательностей:
Схема
прямой последовательностиэто
схема, которую составляют для расчета
симметричного трехфазного режима. В
зависимости от метода расчета и момента
времени генераторы и нагрузки вводятся
соответствующими Э.Д.С. и сопротивлениями.
Остальные элементы вводятся в схему
неизменными сопротивлениями.
Схема
обратной последовательности по структуре
аналогична схеме прямой последовательности.
В схеме обратной последовательности
Э.Д.С. генераторов равны нулю. Считаем
сопротивления
СМ и нагрузок неизменны.
Схема нулевой последовательности:
Схема нулевой последовательности определяется соединением обмоток трансформаторов и автотрансформаторов электрической сети.
Схема
нулевой последовательности начинают
составлять от точки, где возникла
несимметрия. В данную точку включено
напряжение нулевой последовательности
.
Если
несимметрия поперечная, то
прикладывается относительно земли
(рис. 12.1), если насимметрия продольная,
то в рассечку фазы (рис. 12.2)
Если емкостные проводимости не учитываются, то для циркуляции токов нулевой последовательности нужна хотя бы одна заземленная нейтраль (рис. 12.3).
Если в ЭС имеется несколько заземленных нейтралей, то образуется несколько параллельных контуров для токов нулевой последовательности.
При продольной несимметрии циркуляция токов нулевой последовательности при отсутствии заземленных нейтралей возможна по обходным путям.
Если
обходные пути отсутствуют, то ток
протекает, если есть заземленные нейтрали
с обеих сторон от места продольной
несимметрии.
Сопротивление, через которое заземлена нейтраль трансформатора, генератора, двигателя, нагрузки вводится в схему нулевой последовательности утроенным значением.
Если взаимная индукция значительна, то она учитывается в схеме замещения нулевой последовательности.
Начало
схемы нулевой последовательности−
точка, в которой объединены ветви с
нулевым потенциалом, а конец− точка,
где возникла несимметрия.