
- •1.Призначення курсу. Основні вимоги до електричних апаратів
- •1.1 Предмет курсу, його роль і місце серед інших дисциплін
- •1.2 Класифікація електричних апаратів
- •1.3 Вимоги до електричних апаратів
- •1.3.1 Загальні поняття про вимоги до електричних апаратів
- •1.3.2. Основні вимоги до електричних апаратів
- •1.4 Основні позначення апаратів та елементів в електричних системах
- •2. Електродинамічні зусилля в електричних апаратах та їх методи розрахунку
- •2.1 Загальні відомості про електродинамічну стійкість
- •2.2 Основні фізичні поняття, формули, закони, необхідні для розрахунку електродинамічних зусиль електричних апаратів
- •2.3 Електродинамічні сили, що діють між провідниками із струмом. Метод розрахунку електродинамічних зусиль на основі законів Ампера і Біо-Савара-Лапласа
- •Метод енергетичного балансу провідників із струмом
- •2.5 Електродинамічні зусилля при різних формах провідників
- •2.6 Зусилля та моменти, що діють на взаємоперпендикулярні провідники
- •3. Електродинамічні сили в різних умовах роботи, характерних для електричних апаратів
- •3.1 Практичне застосування метода енергетичного балансу
- •3.2 Електродинамічні сили в місці контакту двох провідників з різними діаметрами або в місці зміни перерізу провідника
- •3.3 Зусилля при наявності феромагнетика (сили взаємодії між провідником із струмом та феромагнетичною масою)
- •3.4 Електродинамічні сили при змінному струмі
- •3.4.1 Однофазне коло
- •3.4.2Трифазна сітка; сили, що виникають між провідниками різних фаз
- •3.5 Механічний резонанс
- •3.6 Процес вмикання електричного кола змінного струму. Ударний коефіцієнт
- •3.7 Додаток
- •3.7.2 Розрахунок електродинамічної стійкості шин
- •4. Основи теплових розрахунків
- •4.1 Втрати в електричних апаратах
- •4.2 Втрати в феромагнетиках, які не несуть струм
- •4.3 Способи передачі тепла в середині та з поверхні нагрітих тіл. Коефіцієнт тепловіддачі
- •5. Теплопередача і нагрів провідників при різних режимах роботи
- •5.1 Стаціонарний режим нагрівання
- •5.2 Номінальна сила струму для провідника в повітрі
- •5.3. Термічна дія струму короткого замикання. Термічна стійкість провідників
- •5.4 Тривалі і короткочасні допустимі температури
- •5.5 Допустимий періодично повторюваний режим нагрівання-охолодження
- •5.6 Розподіл температури в котушках та приклади допустимих температур провідників із різних матеріалів
- •6. Електричні контакти
- •6.1 Загальні відомості
- •6.2 Фізичні явища в контактах
- •6.3 Матеріали контактів. Вимоги до них
- •6.4 Температура площадки контактування. Контакти в режимі проходження тривалого струму
- •6.5 Розбірні контакти в режимі короткого замикання
- •7.1 Контакти в режимі короткого замикання. Розмикання, замикання та зварювання контактів
- •7.1.1 Основні види сил
- •7.2 Зварювання контактів
- •7.3 Зношування контактів при їх розмиканні
- •7.3.1 Електрична ерозія
- •7.3.2 Ерозія контактів при малих струмах
- •7.3.3 Зношування контактів при великих струмах та боротьба із ерозією
- •7.4 Конструктивна форма контактів і контактних з’єднань.
- •7.4.1 Найважливіші параметри контактних конструкцій
- •7.4.2 Конструкції контактних вузлів і їх типи
- •7.5 Способи компенсації електродинамічних сил в контактах
- •7.6 Задача
- •8. Вимикання електричного кола постійного і змінного струму
- •8.1 Загальна характеристика вимикання електричних кіл. Відновлювана напруга та відновлювана міцність. Умова вимикання кола апарату
- •8.2 Стадії в міжконтактному проміжку при вимиканні кола. Дуга і її властивості
- •8.3 Статична і динамічна вольтамперна характеристика (вах) дуги. Умови стабільного горіння та гасіння дуги
- •9. Відновлювана міцність та особливості горіння дуги
- •9.1 Відновлювана міцність та її стадії відновлення.
- •9.2 Загальні характеристики дуги
- •9.2.1 Електрична міцність. Теплова стала дуги. Перенапруга. Швидкість відновлення напруги
- •9.2.2 Опір і потужність дуги. Енергія, що виділяється в дузі
- •9.3. Особливості горіння і гасіння дуги змінного струму при вимиканні активного навантаження
- •9.4 Вимикання індуктивного кола змінного струму
- •9.4 Вимикання змінного струму трьохфазної сітки
- •10. Дугогасіння. Дугогасильні решітки та камери
- •10.1 Загальні принципи гасіння дуги
- •10.2 Гасіння відкритої дуги в магнітному полі. Швидкість руху дуги на різних ділянках
- •10.3 Повздовжня щілина. Щілина з декількома перегородками
- •10.4 Системи магнітного дуття
- •10.5 Дугогасильна решітка
- •10.6 Гасіння дуги в маслі
- •10.7 Розрахункові формули дугогасильної системи
- •11. Електричні апарати низьковольтних схем.
- •11.1 Загальні відомості про апарати автоматичного дистанційного управління
- •11.2 Рубильники і перемикачі. Пакетні вимикачі
- •11.3 Командоапарати
- •12.1. Контактори та їх вибір
- •12.2 Реле. Геркони
- •12.3 Вибір реле
- •13.Запобіжники
- •13.1 Призначення та основні елементи запобіжника
- •13.2 Плавка вставка при тривалому часі навантаження. Часово-струмова характеристика запобіжника
- •13.3 Металургійний ефект
- •13.4. Нагрівання плавкої вставки при короткому замиканні
- •14. Вибір та конструкція запобіжників
- •14.1 Вибір запобіжників
- •14.2 Селективний метод захисту кіл
- •14.3 Конструкція запобіжників (загальні відомості)
- •14.4 Захист напівпровідникових приладів (нп)
- •15. Високовольтні запобіжники (ввз) Швидкодіючі запобіжники
- •15.1 Призначення (ввз), вимоги до ввз
- •15.2 Конструкції запобіжників високої напруги.
- •15.2.1 Запобіжники із дрібнозернистим наповнювачем серії пк і пкт
- •15.2.2 Запобіжники, що стріляють (з автогазовим і рідким гасінням). Патрон типу псн – 35
- •15.2.3 Вибір запобіжників високої напруги
- •15.3 Запобіжники із рідкометалічним контактом
- •15.4 Швидкодіючі запобіжники для захисту напівпровідникових приладів
- •15.5 Вибір швидкодіючих запобіжників для захисту напівпровідникових приладів
- •16. Автоматичні повітряні вимикачі (автомати)
- •16.1 Призначення автоматів. Аварійні режими
- •16.2 Основні види автоматів та їх основні параметри.
- •16.2.1 Різновидності автоматів та їх характеристики
- •16.2.2 Основні вузли і параметри автоматів
- •16.3 Струмоведуча система автоматів
- •16.4 Дугогасильні системи
- •17. Електромеханіка автоматів
- •17.1 Приводи та механізми установочних і універсальних апаратів
- •17.2 Розчеплювачі автоматів
- •17.3 Час вимикання автоматів
- •17.4 Напівпровідникові розчеплювачі
- •17.5 Вимикачі гасіння магнітного поля
- •18. Автоматичні вимикачі загально-промислового застосування
- •18.1 Вибір і характеристики автоматичних вимикачів.
- •18.2 Загальна характеристика серійних автоматів
- •18.3 Принцип роботи автомата а3100 та а3700
- •18.4 Швидкодіючийир автомат . Ваб – 20м
- •19.Роз’єднувачі, відокремлювачі, короткозамикачі
- •19.1 Роз’єднувачі, їх призначення. Схеми вимикання
- •19.2 Вимоги до роз’єднувачів
- •19.3 Вибір роз’єднувачів
- •19.4 Конструкції роз’єднувачів
- •19.5. Відокремлювачі і короткозамикачі.
- •20. Вимикачі змінного струму високої напруги
- •20.1. Параметри високовольтних вимикачів
- •20.2. Номінальний струм вимикання. Номінальна потужність
- •20.3. Автоматичне повторне вмикання вимикача (апв)
- •20.4 Вимоги до вимикачів та їх класифікація
- •21. Особливості високовольтних вимикачів
- •21.1 Масляні вимикачі
- •21.1.1 Принцип роботи масляного вимикача
- •21.1.2Особливості конструкції масляних бакових і маломасляних вимикачів
- •21.2 Повітряні вимикачі
- •21.2.1 Особливості повітряних вимикачів
- •21.2.2 Функціональна схема полюса генераторного вимикача із повітрянаповненим відокремлювачем
- •21.3 Електромагнітні та вакуумні вимикачі.
- •21.3.1 Електромагнітні вимикачі
- •21.3.2 Вакуумні вимикачі
- •22. Реактори, конструкція і основні параметри.
- •22.1 Реактори. Відносний опір генератора та реактора
- •22.2 Номінальні напруга та струм реактора
- •22.3 Конструкція реактора
- •22.4 Розрядники
- •23.Трансформатори струму
- •23.1 Призначення, схема вмикання, основні параметри трансформаторів струму
- •23.2 Похибки трансформаторів в залежності від різних факторів
- •23.3 Особливості роботи трансформаторів струму
- •23.4 Особливості конструкції трансформаторів
- •24. Методика розрахунків та вибору електричних апаратів
- •24.1 Основні принципи проектування електричних апаратів
- •24.2 Струмоведучі системи (свс) електричних апаратів
- •24.3 Граничний струм контактних систем електричних апаратів
- •24.4 Розрахункові формули дугогасильних систем
3.6 Процес вмикання електричного кола змінного струму. Ударний коефіцієнт
При
розрахунку електричних апаратів
(контакторів, автоматів захисту та
інших) необхідно врахувати особливості
режиму вмикання. Якщо вмикається аппарат,
то змінюється струм в колі, опір контакту
апарату, відстань між контактами.
Залежність цих величин від часу при
вмиканні показано на рис. 3.7. В момент
t1
подається команда “ввімкнути”. В момент
t2
рухома система контактів починає
рухатися. В момент t3к
контакти замикаються. Як видно із кривої
Rх(t)
опір контактного проміжку в цей момент
падає. Його коливання зв’язані їз появою
невеликої короткострокової дуги.
Для схеми, що представлена на рис. 3.8 можна записати формулу:
коли
джерело живлення – джерело постійного
струму і
при джерелі змінного струму. Розв’язавши
дані диференційні рівняння, отримують
аналітичні вирази струму.
Як уже відмічалось, для джерела змінного струму струм і визначається як сума аперіодичної і періодичної складових, що змінюються із часом.
Із
аналізу процесу вмикання випливає, що
найбільшого значення ударний струм
досягає, коли момент вмикання кола
відповідає максимуму періодичного
струму. Якщо коло є індуктивним,
і кут
,
тоді
приймає вигляд:
(3.7)
де L – індуктивність, Гн;
R – активний опір кола, Ом.
Величина
залежить від того яка це схема. При малих
напругах в низьковольтних енергетичних
установках ця величина буде коливатись
в межах 0.05с при яких
=1.3.
Для апаратів високої напруги цей час
із зростанням P
і U
збільшується до 0.3 с., а
становить величину 1.8 (див. додаток 3.7).
3.7 Додаток
3.7.1
Ударний коефіцієнт
.
Пробій ізоляції і умови руйнування
Розглянемо детальніше, звідки береться формула (3.7)
-
Наявність в колі індуктивності викликає появу при замиканні аперіодичної складової, що змінюється в часі за законом
-
Найбільша аперіодична складова буде при умові, що при t=0,
Тоді результуючий струм в колі змінюється за законом
а напруга
Підстановки дають:
при
– момент,
коли струм стає ударним.
залежить
від сталої часу
Для
низьковольтних апаратів
~1.3 поскільки
уд
значно менше за рахунок зменшення
.
Аперіодична
складова має значну величину тільки
при великих значеннях
.
В цьому випадку „вимушена” складова
струму відстає від напруги на 90
.
Таким чином, найбільше значення аперіодичної складової буде відповідати також вимиканню кола, при проходженні напруги через нульове значення.
-
Для трифазного кола, якщо вважати, що аперіодична складова є однаковою, рівна періодичній амплітуді і не змінюється в часі, тоді
При
розрахунку електродинамічної стійкості
для однофазного кола беруть:
Для
трьохфазного кола:
де
– амплітуда періодичної складової
струму трифазного короткого замикання.
Ізоляція апаратів знаходиться під дією електродинамічних зусиль, а також вітру, голольоду, вологи і т.д.
Тому
при розрахунках в I – му випадку зусилля
в II-му
– зусилля
руйнування.
При включені ємності в коло відбувається наростання струму і виникають високочастотні коливання.
Якщо включати до синусоїдної напруги трансформатор, то при холостому ході трансформатора відбувається значне зростання магнітного потоку („кидки” магнітного потоку), що приводить до кидків намагнічуючого струму трансформатора, що в багато раз може перевищити нормальний струм холостого ходу.
При
вимиканні кола вся енергія
,
що запасається в індуктивності кола,
(індуктивність завжди є в колі) повинна
витратитись, бо і
0.
В кожному
колі є ємності ().
Енергія
могла би повністю піти на заряд цієї
ємності, і величина напруги
при цьому досягла би значення ~ 100 кВ, що
викличе пробій ізоляції. І тоді коло
неможливо відключити. Тому велику роль
в процесі вимикання відіграє дуга та
її опір, який обмежує струм в колі.