
- •1.По современным представлениям, электрические заряды не действуют друг на друга непосредственно. Каждое заряженное тело создает в окружающем пространстве электрическое поле.
- •Теорема Гаусса
- •2. Тело, обладающее электрическим зарядом, создает в окружающем пространстве электрическое поле, которое может быть обнаружено по его воздействию на другие заряженные тела.
- •Закон Ома для участка цепи
- •Правила Кирхгофа
- •11. Электромагнитные колебания и переменные токи
- •Колебательный контур
- •Принцип действия
- •Получение переменной электродвижущей силы
- •Закон Ома для переменного тока
- •12. Волновое уравнение
11. Электромагнитные колебания и переменные токи
Электромагнитными колебаниями называются периодические изменения напряженности Е и индукции В.
Электромагнитными колебаниями являются радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи, гамма-лучи.
Переме́нный ток— электрический ток, который периодически изменяется по величине и направлению.
Под переменным током также подразумевают ток в обычных одно- и трёхфазных сетях. В этом случае мгновенные значения тока и напряжения изменяются по гармоническому закону.
В устройствах-потребителях постоянного тока переменный ток часто преобразуется выпрямителями для получения постоянного тока.
Колебательный контур
Колебательный контур — осциллятор, представляющий собой электрическую цепь, содержащую соединённые катушку индуктивности и конденсатор. В такой цепи могут возбуждаться колебания тока (и напряжения).
Колебательный контур — простейшая система, в которой могут происходить свободные электромагнитные колебания
Резонансная частота контура определяется так называемой формулой Томсона:
Принцип действия
Пусть конденсатор ёмкостью C заряжен до напряжения U0. Энергия, запасённая в конденсаторе составляет
Параллельный колебательный контур
При соединении конденсатора с катушкой индуктивности, в цепи потечёт ток I, что вызовет в катушке электродвижущую силу (ЭДС) самоиндукции, направленную на уменьшение тока в цепи. Ток, вызванный этой ЭДС (при отсутствии потерь в индуктивности) в начальный момент будет равен току разряда конденсатора, то есть результирующий ток будет равен нулю. Магнитная энергия катушки в этот (начальный) момент равна нулю.
Затем результирующий ток в цепи будет возрастать, а энергия из конденсатора будет переходить в катушку до полного разряда конденсатора. В этот момент электрическая энергия конденсатора EC = 0. Магнитная же энергия, сосредоточенная в катушке, напротив, максимальна и равна
,
где L —
индуктивность
катушки, I0 —
максимальное значение тока.
После этого начнётся перезарядка конденсатора, то есть заряд конденсатора напряжением другой полярности. Перезарядка будет проходить до тех пор, пока магнитная энергия катушки не перейдёт в электрическую энергию конденсатора. Конденсатор, в этом случае, снова будет заряжен до напряжения − U0.
В результате в цепи возникают колебания, длительность которых будет обратно пропорциональна потерям энергии в контуре.
В общем, описанные выше процессы в параллельном колебательном контуре называются резонанс токов, что означает, что через индуктивность и ёмкость протекают токи, больше тока проходящего через весь контур, причем эти токи больше в определённое число раз, которое называется добротностью. Эти большие токи не покидают пределов контура, так как они противофазны и сами себя компенсируют. Стоит также заметить, что сопротивление параллельного колебательного контура на резонансной частоте стремится к бесконечности (в отличие от последовательного колебательного контура, сопротивление которого на резонансной частоте стремится к нулю), а это делает его незаменимым фильтром.
Стоит заметить, что помимо простого колебательного контура, есть ещё колебательные контуры первого, второго и третьего рода, что учитывают потери и имеют другие особенности.
Формула Томсона.
Уравнение описывающее свободные электромагнитные колебания, имеет вид:
q" = -v02 q
Коэффициент пропорциональности в уравнении q" = - q / LC представляет квадрат циклической частоты колебаний заряда v02 = 1 / (LC)½. Период свободных колебаний в контуре равен:
T=2p/w0=2p(LG)½
Затухающие
колебания —
колебания, энергия которых уменьшается
с течением времени. Бесконечно длящийся
процесс вида
в
природе невозможен. Свободные колебания
любого осциллятора рано или поздно
затухают и прекращаются. Поэтому на
практике обычно имеют дело с затухающими
колебаниями. Они характеризуются тем,
что амплитуда колебаний A
является убывающей функцией. Обычно
затухание происходит под действием сил
сопротивления среды, наиболее часто
выражаемых линейной зависимостью от
скорости колебаний
или
её квадрата.
ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ
колебания, возникающие в к.-л. системе под действием периодич. внеш. силы (напр., колебания мембраны телефона под действием перем. магн. поля, колебания механич. конструкции под действием перем. нагрузки). Хар-р В. к. определяется как внеш. силой, так и св-вами самой системы. В начале действия пернодич. внеш. силы хар-р
При
включении в линейный К. к. генератора с
переменной эдс
в
нём устанавливаются вынужденные
колебания
с частотой
.
Напр., при по-следоват. включении эдс
амплитуда колебаний напряжения V
на конденсаторе, определяемая соотношением
зависит
не только от амплитуды внеш. эдс, но и
от её частоты
.