- •1. Теплообменные аппараты
- •3. Скоростной теплообменник – конструкция, прим-е.
- •4. Регенеративные теплообменники, утилизаторы.
- •Рекуперативные теплообменники.
- •6. Теплообменники на тепловых трубах.
- •7. Теплообменники на термосифонах.
- •8. Изображение в I-d диаграмме основных процессов изменения тепловлажностного состояния воздеха.
- •9. Распределение лучистой энергии, падающей на тело
- •10. Характер распределения температур при теплопередаче через плоскую стенку.
- •11. Характер изменения температур теплоносителей при прямотоке и противотоке в теплообменниках
- •12. Нормативные параметры микроклимата жилых помещений.
- •13. Комфортные сочет-я парам-ов микроклимата для сохран-я теплового равновесия в организме человека.
- •14. Санит.-гигиен.Треб.По сост.Микроклимота помещ.
- •15. Системно инженерное оборудование зданий для обеспечения комфортного микроклимата помещения.
- •16 Теплотехнические характеристики ограждающих конструкций
- •17. Нормативные и требуемые значения термического сопротивления теплопередаче ограждений.
- •18. Схемы расположения нейтральной плоскости при наличии гравитационного давления.
- •20. Определение расчетной мощности системы отопления.
- •21. Оценка теплопотерь ч-з огражд. Констр-ии здания.
- •22. Влияние добавочных теплопотерь через ограждения на тепловой баланс здания.
- •23. Влияние энергосберегающих мероприятий на удельную тепловую характеристику зданий.
- •25. Определение естественного давления в двухтрубной системе водяного отопления
- •26. Особенности определения естественного давления в однотрубной системе водяного отопления.
- •Определение потерь давления на трение в трубопроводах с водяной системой отопления.(λ)
- •28. Определение потерь давления на местных сопротивлениях.
- •29. Особенности прокладки трубопроводов и построение аксонометрич. Схем отопительных систем зданий.
- •30. Последовательность гидравлического расчёта систем водяного отопления зданий, цель.
- •31. Виды и конструкция отопительных приборов
- •32. Перегруппировка радиаторов.
- •33. Схемы присоединения отопительных приборов к теплопроводам систем отопления.
- •34. Тепловой расчёт отопительных приборов.
- •35. Регулирование температуры расхода теплоносителя и теплоотдача нагревательных приборов.
- •36. Особенности воздушн. Отопления здания, конструкт.Исполнение, область приминения.
- •37. Инженерное оборудование системы воздушного отопления
- •38. Схемы систем воздушн. Отопл-я с рециркуляцией
- •39. Прямоточные системы воздушного отопления, совмещённые с приточной вентиляцией.
- •40. Воздушно-тепловые завесы на промышленных и общественных объектах.
- •41. Оцинкованные трубы. Конструктивное решение панельно-лучистого отопления.
- •43. Русские печи и камины в котеджном строительстве.
- •45. Классификация систем вентиляции, область применения отдельных систем.
- •47. Конструктивное решение в системе общеобменной приточно-вытяжной системе вентиляции.
- •48. Аэродинамический расчёт системы вентиляций зданий
- •Типы и характеристики вентиляции, конструкции вентиляционных центров.
- •50. Конструирование узлов системы вентиляции для приточно-вытяжной вентиляции здания.
- •51. Особенности конструктивного исполнения вентузлов для систем аспирации и пневмотранспорта.
- •52. Местная вентиляция приточная, вытяжная, применение
- •53 Борьба с шумом и вибрациями в сист-ах вентиляции
- •54. Системы кондиционирования микроклимата. Оборудование. Применение.
- •55. Централизованное теплоснабжение – преимущества, недостатки, применение.
- •56. Теплотехнические и экономические показатели
- •57. Схемы присоединения потребителей к тепловым
- •58. Схема теплового пункта при централ.Теплоснабж.
- •59. Схема районной котельни в системе централизованного отопления
- •60 Схема тэц с централизованным теплоснабжением
- •62. Схема аэс, условия биологической защиты, особенности использования для целей теплоснабжения
- •63. Система газоснабжения городов и населенных пунктов
- •64. Назначение грс и грп в системе газоснабжения.
- •65. Схемы обарудования грп и гру.
- •66. Прокладка городских газопроводов, условия сдачи в эксплуатацию.
- •67. Применение установок сжиженного газа.
- •69. Способы и оборудование для нагрева воздуха.
- •70. Способы и оборудование для очистки воздуха.
- •Конструкция рукавных фильтров, применение и их регенерация.
- •72. Способы мокрой очистки воздуха.
- •73. Электрическая очистка газов, оборудование, область применения.
- •74. Способы организованной подачи наружного воздуха в обслуживаемые помещения жилых зданий
- •75. Кварт-е приточно-вытяжные сист. Вентиляции жи-лых зданий с рекуперацией теплоты вытяжного воздуха
- •76. Приточно-вытяжной центр на тепловых трубах.
- •77. Использование природных источников для обогрева зданий.
9. Распределение лучистой энергии, падающей на тело
Лучистая энергия, испускаемая на какое-либо тело, в зависимости от его физических свойств, формы и состояния поверхности, частично поглощается этим телом и переходит в тепловую энергию, а остальная часть отражается и частично проходит через него (рис.1), т.е.
Qo = Qa + Qr +Qd
Разделив обе части равенства на Qo, получим:
=
или
1
=
А
+
R
+
D,
где
A
=
Qa
/Qo
-
поглощательная способность тела;
R
=
Qr
/Qo
-
отражательная способность тела;D
=
Qd
/
Qo
-
пропускная способность тела.
Рис.1.
Схема распределения лучистой энергии,
падающей на тело: Qo
- общее количество лучистой энергии,
падающей на тело;
Qa
,
Qr
,
Qd
- соответственно количество лучистой
энергии, поглощенной, отраженной и
прошедшей через него.
Величины A, R, D являются безразмерными коэффициентами поглощения, отражения и пропускания. В зависимости от физических свойств тела, его температуры и длины волны падающего излучения эти коэффициенты имеют разные численные значения. А в частных случаях они могут быть равны нулю.
Так если коэффициент поглощения А = 1(т.е. R = D = 0), то тело полностью поглощает все подающие на него лучи и называется абсолютно черным телом. Если коэффициент отражения R = 1(т.е. A=D = 0), то тело полностью отражает падающие на него лучи и явл. зеркальным, при правильном на рассеянном отражении, или абсолютно белым телом, при рассеянном отражении. Если D = 1 (т.е. R = A = 0), то тело пропускает через себя все падающие на него лучи. Такое тело называется абсолютно проницаемым (прозрачным).
10. Характер распределения температур при теплопередаче через плоскую стенку.
Д
ля
однослойной плоской стенки
(рис. 1.2) при условии распространения
теплоты только вдоль оси х (температурное
поле в стенке будет одномерным и
изотермическими поверхностями будут
плоскости, параллельные поверхностям
стенки)
закон Фурье
запишется
аналитически
в следующем виде:
(1.16)
где δ - толщина стенки, м;
R
= δ/λ - термическое сопротивление стенки,
(м2∙К)/Вт.
Общее количество теплоты, проходящей за 1 ч через стенку с площадью поверхности F , м2 , определяется как: Q=q∙F
Для
многослойной плоской стенки
(рис. 1.3), состоящей их
п
слоев, плотно прилегающих друг к другу,
при стационарном режиме тепловые потоки,
походящие через каждый из слоев,
одинаковы. Поэтому для каждого слоя
можно написать:

Если из этих уравнений выразить разницу температур, а затем просуммировать правую и левую части этих равенств, то получится уравнение для определения плотности теплового потока для многослойной стенки:
где R = R1 + R2 +... + Rn - общее термическое сопротивление многослойной стенки, равное сумме термических сопротивлений отдельных слоев.
11. Характер изменения температур теплоносителей при прямотоке и противотоке в теплообменниках
Сопоставление температурных режимов работы теплообменных аппаратов при прямотоке и противотоке позволяет отметить, что при прямотоке максимальный температурный напор наблюдается у входа в теплообменный аппарат; затем этот напор уменьшается, достигая своего минимального значения у выхода из аппарата. В противоположность этому при противотоке температурный напор более равномерно распределяется вдоль поверхности.
а
)
прямоток
б) противоток
Температурный напор вдоль поверхности при прямотоке изменяется сильнее, чем при противотоке.
Во всех случаях при прямотоке передается меньшее количество теплоты, т.е. противоток более экономичен по сравнению с прямотоком.
Чтобы выявить преимущество одной схемы перед другой, достаточно сравнить количество передаваемой теплоты при прямотоке и противотоке при равенстве прочих условий.
Во всех остальных случаях при одной и той же поверхности нагрева и одинаковых крайних температурах теплоносителей при прямотоке передается меньше теплоты, чем при противотоке.
