
- •1. Теплообменные аппараты
- •3. Скоростной теплообменник – конструкция, прим-е.
- •4. Регенеративные теплообменники, утилизаторы.
- •Рекуперативные теплообменники.
- •6. Теплообменники на тепловых трубах.
- •7. Теплообменники на термосифонах.
- •8. Изображение в I-d диаграмме основных процессов изменения тепловлажностного состояния воздеха.
- •9. Распределение лучистой энергии, падающей на тело
- •10. Характер распределения температур при теплопередаче через плоскую стенку.
- •11. Характер изменения температур теплоносителей при прямотоке и противотоке в теплообменниках
- •12. Нормативные параметры микроклимата жилых помещений.
- •13. Комфортные сочет-я парам-ов микроклимата для сохран-я теплового равновесия в организме человека.
- •14. Санит.-гигиен.Треб.По сост.Микроклимота помещ.
- •15. Системно инженерное оборудование зданий для обеспечения комфортного микроклимата помещения.
- •16 Теплотехнические характеристики ограждающих конструкций
- •17. Нормативные и требуемые значения термического сопротивления теплопередаче ограждений.
- •18. Схемы расположения нейтральной плоскости при наличии гравитационного давления.
- •20. Определение расчетной мощности системы отопления.
- •21. Оценка теплопотерь ч-з огражд. Констр-ии здания.
- •22. Влияние добавочных теплопотерь через ограждения на тепловой баланс здания.
- •23. Влияние энергосберегающих мероприятий на удельную тепловую характеристику зданий.
- •25. Определение естественного давления в двухтрубной системе водяного отопления
- •26. Особенности определения естественного давления в однотрубной системе водяного отопления.
- •Определение потерь давления на трение в трубопроводах с водяной системой отопления.(λ)
- •28. Определение потерь давления на местных сопротивлениях.
- •29. Особенности прокладки трубопроводов и построение аксонометрич. Схем отопительных систем зданий.
- •30. Последовательность гидравлического расчёта систем водяного отопления зданий, цель.
- •31. Виды и конструкция отопительных приборов
- •32. Перегруппировка радиаторов.
- •33. Схемы присоединения отопительных приборов к теплопроводам систем отопления.
- •34. Тепловой расчёт отопительных приборов.
- •35. Регулирование температуры расхода теплоносителя и теплоотдача нагревательных приборов.
- •36. Особенности воздушн. Отопления здания, конструкт.Исполнение, область приминения.
- •37. Инженерное оборудование системы воздушного отопления
- •38. Схемы систем воздушн. Отопл-я с рециркуляцией
- •39. Прямоточные системы воздушного отопления, совмещённые с приточной вентиляцией.
- •40. Воздушно-тепловые завесы на промышленных и общественных объектах.
- •41. Оцинкованные трубы. Конструктивное решение панельно-лучистого отопления.
- •43. Русские печи и камины в котеджном строительстве.
- •45. Классификация систем вентиляции, область применения отдельных систем.
- •47. Конструктивное решение в системе общеобменной приточно-вытяжной системе вентиляции.
- •48. Аэродинамический расчёт системы вентиляций зданий
- •Типы и характеристики вентиляции, конструкции вентиляционных центров.
- •50. Конструирование узлов системы вентиляции для приточно-вытяжной вентиляции здания.
- •51. Особенности конструктивного исполнения вентузлов для систем аспирации и пневмотранспорта.
- •52. Местная вентиляция приточная, вытяжная, применение
- •53 Борьба с шумом и вибрациями в сист-ах вентиляции
- •54. Системы кондиционирования микроклимата. Оборудование. Применение.
- •55. Централизованное теплоснабжение – преимущества, недостатки, применение.
- •56. Теплотехнические и экономические показатели
- •57. Схемы присоединения потребителей к тепловым
- •58. Схема теплового пункта при централ.Теплоснабж.
- •59. Схема районной котельни в системе централизованного отопления
- •60 Схема тэц с централизованным теплоснабжением
- •62. Схема аэс, условия биологической защиты, особенности использования для целей теплоснабжения
- •63. Система газоснабжения городов и населенных пунктов
- •64. Назначение грс и грп в системе газоснабжения.
- •65. Схемы обарудования грп и гру.
- •66. Прокладка городских газопроводов, условия сдачи в эксплуатацию.
- •67. Применение установок сжиженного газа.
- •69. Способы и оборудование для нагрева воздуха.
- •70. Способы и оборудование для очистки воздуха.
- •Конструкция рукавных фильтров, применение и их регенерация.
- •72. Способы мокрой очистки воздуха.
- •73. Электрическая очистка газов, оборудование, область применения.
- •74. Способы организованной подачи наружного воздуха в обслуживаемые помещения жилых зданий
- •75. Кварт-е приточно-вытяжные сист. Вентиляции жи-лых зданий с рекуперацией теплоты вытяжного воздуха
- •76. Приточно-вытяжной центр на тепловых трубах.
- •77. Использование природных источников для обогрева зданий.
1. Теплообменные аппараты
Важным конструктивным элементом систем инженерных сетей и оборудования является теплообменный аппарат (теплообменник) – устройство, предназначенное для передачи теплоты от одного теплоносителя другому. В качестве теплоносителей в нем могут использоваться пар, горячая вода, дымовые газы и другие тела. По принципу действия и конструктивному оформлению теплообменники разделяются на рекуперативные, регенеративные и смесительные.
В рекуперативных теплообменниках обмен теплотой между теплоносителями происходит способом теплопередачи от греющего теплоносителя к нагреваемому через разделяющую их твердую стенку. Процесс теплообмена в них протекает при стационарном режиме.
В зависимости от взаимного направления движения теплоносителей теплообменники этого типа бывают прямоточные, противоточные и перекрестные (рис. 1).
Рис.
1. Схема
рекуперативных
теплообменников:
а) противоточного;
б) прямоточного;
в) перекрестного
К числу рекуперативных теплообменников относятся паровые котлы, водонагреватели, приборы систем центрального отопления и др.
В регенеративных теплообменниках процесс теплообмена происходит в условиях нестационарного режима. В них поверхность нагревапредставляет собой специальную насадку из кирпича, металла или другого материала, которая сначала аккумулирует теплоту, а затем отдает ее нагреваемому теплоносителю.
В смесительных теплообменниках процесс теплообмена осуществляется при непосредственном соприкосновении и перемешивании теплоносителей. Примерами такого теплообменника являются башенный охладитель (градирня), предназначенный для охлаждения воды воздухом, контактные водоподогреватели.
Рекуперативные и регенеративные теплообменники являются поверхностными, поскольку теплопередача в них связана с поверхностью нагрева или охлаждения, а смесительные – контактными.
Тепловые расчеты теплообменников разделяются на проектные и поверочные. Проектные (конструктивные) тепловые расчеты выполняют при проектировании новых аппаратов для определения необходимой поверхности нагрева. Поверочные тепловые расчеты выполняют в том случае, если известна поверхность нагрева теплообмен-ника и требуется определить количество переданной теплоты и конечные температуры теплоносителей.
3. Скоростной теплообменник – конструкция, прим-е.
Скоростные теплообменники обладают рядом неоспоримых преимуществ: большая производительность, компактность, а также отсутствие емкости для накопления больших объемов нагретой до 60ºC воды, в которой из-за застойных явлений могут размножаться вредные микроорганизмы. Недостатком является необходимость суммирования мощностей на отопление и приготовление горячей воды, то есть установка котла большой мощности.
Конструктивно скоростные теплообменники могут быть пластинчатыми или трубчатыми.
В кожухотрубных (скоростных) теплообменниках среды движутся с достаточно большой скоростью для увеличения коэффициента теплоотдачи. Кожухотрубный водоводяной теплообменник состоит из стандартных секций длиной до 4 м. Каждая секция представляет собой стальную трубу диаметром до 300 мм, внутрь которой помещены несколько латунных трубок. В независимой схеме системы отопления или вентиляции греющая вода из наружного теплопровода пропускается по латунным трубкам, нагреваемая - противотоком в межтрубном пространстве, в системе горячего водоснабжения нагреваемая водопроводная вода пропускается по трубкам, а греющая вода из тепловой сети - в межтрубном пространстве. Более совершенный и значи- тельно более компактный пластинчатый теплообменник набирается из определённого количества стальных профилированных пластин. Греющая и нагреваемая вода протекает между пластинами противотоком или перекрёстно. Длину и число секций кожухотрубного теплообменника или размеры и число пластин в пластинчатом теплообменнике определяют в результате специального теплового расчета.