
- •6. Що означає "правильне відтинання"?
- •7. Як розрахувати інтервали можливих змін цін на одиницю кожного виду продукцї?
- •8. Поясніть, що називається областю доступних планів.
- •9. Яка задача математичного програмування називається цілочисловою
- •10. Опишіть алгоритм методу Гоморі
- •11. Як звести задачу лінійного програмування до канонічної форми?
- •12. Як звести відкриту транспортну задачу на закриту?
- •13. Як виробник має змінити план виробництва продукції, щоб уникнути втрат, пов"язаних із надвиробництвом відповідного виду продукції?
- •14. Як геометрично можна інтерпретувати розв"язок задачі цілочислового програмування?
- •15. Сформулюйте правила побудови двоїстих задач
- •16. Які задачі лінійного програмування можна розв’язати графічним методом
- •17. Сформулюйте умови оптимальності розв’язку задачі симплекс методом
- •18. Сформулюйте необхідну і достатню умови існування розв’язку транспортної задачі
- •19. У чому сутність теорії двоїстості у лінійному програмуванні
- •20. Для розв’язування яких математичних задач застосовується симплекс метод?
- •21. Як вибрати спрямовуючий вектор-стовпець?
- •22. Що означає "виродження" опорного плану? Як його позбутися?
- •23. Поясніть геометричну інтерпретацію задачі лінійного програмування
- •24. Скільки змінних та обмежень має двоїста задача відповідно до прямої?
- •25. Суть алгоритму симплексного методу.
- •26. Сформулюйте третю теорему двоїстості та дайте її економічне тлумачення.
- •27. Назвіть методи розв'язув задач динамічного програмування
- •28. За яких умов задача лінійного програмування з необмеженою областю допустимих планів має розв"язок
- •29. Сформулюйте основні аналітичні властивості розв’язків задачі лінійного програмування.
- •30. Які ви знаете властивості опорних планів транспортної задачі?
- •31. Побудуйте просту економіко-математичну модель. Запишіть до неї двоїсту. Дайте економічну інтерпретацію двоїстих оцінок.
- •32. Економічна і математична постановка транспортної задачі.
- •33. Як впливає на оптимальний план введення нової змінної.
- •34. Як вибрати розв’язуваний елемент?
- •35. Чим відрізняється транспортна задача від загальної задачі лінійного програмування?
- •36. Які взаємоспряжені задачі називаються симетричними, а які – несиметричними7 Чим вони відрізняються?
- •37. Опишіть алгоритм методу гілок та меж.
- •38. Сформулюйте задачу динамічного програмування.
- •39. Як визначити статус ресурсів прямої задачі та інтервали стійкості двоїстих оцінок відносно змін запасів дефіцитних ресурсів?
- •40. Суть методу Жордана-Гаусса.
- •41. Назвіть умови оптимальності транспортної задачі.
- •42. Як визначити, що ресурс є дефіцитним (недефіцитним)?
- •43. Суть методу штучного базису.
- •44. Як впливає на оптимальний план введення додаткового обмеження?
- •45. Назвіть етапи алгоритму методу потенціалів.
- •46. Наведіть приклади економічних задач, що належать до класу задач динамічного програмування.
- •47. Які ви знаєте методи побудови опорного плану?
- •49. Сформулюйте другу теорему двоїстості та її економічне тлумачення.
- •50. Як за розв’язком прямої задачі знайти розв’язок двоїстої?
- •55. Як визначити рентабельність кожного виду продукції, що виготовляється на підприємстві?
- •56. Який план називається опорним?
- •57. Наведіть приклади економічних задач, що належать до цілочислових.
- •58. Кожна задача лінійного програмування пов’язана з іншою, так званою двоїстою задачею.
- •59.Суть алгоритму графічного методу ров’язання задач лінійного програмування
- •60. Як обчислюють потенціали?.
- •61. Опишіть економічну і математичну постановку двох етапної транспортної задачі.
- •62. Як визначити план виробництва продукції та зміну доходу підприємства, якщо збільшити (зменшити) обсяг ресурсів?
- •63. Сформуйте другу теорему двоїстості та дайте її економічне тлумачення.
63. Сформуйте другу теорему двоїстості та дайте її економічне тлумачення.
Друга теорема двоїстості для симетричних задач. Для того, щоб плани X* та Y* відповідних спряжених задач були оптимальними, необхідно і достатньо, щоб виконувалися умови доповнюючої нежорсткості:
.
Економічний
зміст другої теореми двоїстості стосовно
оптимального плану Х* прямої задачі.
Якщо для виготовлення всієї продукції
в обсязі, що визначається оптимальним
планом Х*, витрати одного і-го ресурсу
строго менші, ніж його загальний обсяг
bi,
то відповідна оцінка такого ресурсу
(компонента
оптимального плану двоїстої задачі)
буде дорівнювати нулю, тобто такий
ресурс за даних умов для виробництва
не є «цінним». Якщо ж витрати ресурсу
дорівнюють його наявному обсягові bi,
тобто його використано повністю, то він
є «цінним» для виробництва, і його оцінка
буде
строго більшою від нуля. Економічне
тлумачення другої теореми двоїстості
щодо оптимального плану Y*
двоїстої задачі: у разі, коли деяке j-те
обмеження виконується як нерівність,
тобто всі витрати на виробництво одиниці
j-го
виду продукції перевищують її ціну сj,
виробництво такого виду продукції є
недоцільним, і в оптимальному плані
прямої задачі обсяг такої продукції
дорівнює
нулю. Якщо витрати на виробництво j-го
виду продукції дорівнюють ціні одиниці
продукції cj,
то її необхідно виготовляти в обсязі,
який визначає оптимальний план прямої
задачі
.