
- •Содержание
- •1 Введение 5
- •2 Управление процессами 87
- •3 Реализация межпроцессного взаимодействия в ос Unix 114
- •4 Файловые системы 152
- •4.1 Основные концепции 152
- •5 Управление оперативной памятью 181
- •6 Управление внешними устройствами 196
- •Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •Основы архитектуры вычислительной системы
- •Структура вс
- •Структура вычислительной системы.
- •Аппаратный уровень вс
- •Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •Управление логическими/виртуальными ресурсами
- •Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •Выводы, литература
- •Структура организации вычислительной системы.
- •Основы компьютерной архитектуры
- •Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •Центральный процессор
- •Структура организации центрального процессора.
- •Регистровая память
- •Устройство управления. Арифметико-логическое устройство
- •Общая схема работы кэШа.
- •Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •Внешние устройства
- •Внешние устройства.
- •Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •Иерархия памяти
- •Иерархия памяти.
- •Аппаратная поддержка операционной системы и систем программирования
- •Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •Системный стек
- •Системный стек.
- •Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •Терминальные комплексы (тк)
- •Терминальные комплексы.
- •Компьютерные сети
- •Компьютерные сети.
- •Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •Основы архитектуры операционных систем
- •Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •Логические функции ос
- •Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •Управление процессами
- •Основные концепции
- •Модели операционных систем
- •Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •Контекст процесса
- •Реализация процессов в ос Unix
- •Процесс ос Unix
- •Разделение сегмента кода.
- •Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •Планирование
- •Взаимодействие процессов
- •Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •Способы организации взаимного исключения
- •Пример двоичного семафора.
- •Классические задачи синхронизации процессов
- •Обещающие философы.
- •Реализация межпроцессного взаимодействия в ос Unix
- •Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •Сигналы
- •Неименованные каналы
- •Именованные каналы
- •Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •Разделяемая память ipc
- •Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •Сокеты — унифицированный интерфейс программирования распределенных систем
- •Файловые системы
- •Основные концепции
- •Структурная организация файлов
- •Атрибуты файлов
- •Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •Модели реализации каталогов
- •Модели организации каталогов.
- •Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •Координация использования пространства внешней памяти
- •Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •Надежность файловой системы
- •Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •Примеры реализаций файловых систем
- •Организация файловой системы ос Unix. Виды файлов. Права доступа
- •Логическая структура каталогов
- •Логическая структура каталогов.
- •Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •Работа с массивом свободных индексных дескрипторов
- •Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •Достоинства и недостатки файловой системы модели System V
- •Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •Выделение пространства для файла
- •Выделение пространства для файла.
- •Структура каталога ffs
- •Структура каталога ffs bsd.
- •Блокировка доступа к содержимому файла
- •Управление оперативной памятью
- •Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •Сегментное распределение
- •Сегментное распределение.
- •Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •Управление внешними устройствами
- •Общие концепции
- •Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •Работа с внешними устройствами в ос Unix
- •Файлы устройств, драйверы
- •Системные таблицы драйверов устройств
- •Ситуации, вызывающие обращение к функциям драйвера
- •Включение, удаление драйверов из системы
- •Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •Буферизация при блок-ориентированном обмене
- •Борьба со сбоями
-
Файловые системы
-
Основные концепции
-
Под файловой системой (ФС) мы будем понимать часть операционной системы, представляющую собой совокупность организованных наборов данных, хранящихся на внешних запоминающих устройствах, и программных средств, гарантирующих именованный доступ к этим данным и их защиту.
Файловая система является с точки зрения пользователя первым виртуальным ресурсом (который появился в операционных системах), достаточно понятным и достаточно просто используемым во время его работы за машиной. Если сравнить ФС с другим виртуальным ресурсом — например, виртуальной памятью, то рядовому пользователю ПК может быть совсем не понятным, зачем нужен механизм виртуальной памяти. Появление ФС кардинально изменило взгляд на использование вычислительных систем. Почти сразу с момента использования вычислительной техники возникла проблема размещения данных во внешней памяти. Необходимость поддержки этого размещения обуславливалось несколькими причинами. Во-первых, была тривиальная необходимость сохранения данных: время «одноразовых» решений задач (когда требовалось, грубо говоря, лишь вычислить значение некой формулы) прошло достаточно быстро. Появились задачи, требующие больших объемов начальных данных, которые, в свою очередь, являлись результатом решения другой задачи. И эти данные надо было где-то сохранять, причем, сохранять без наличия программ, которые их используют. Как следствие, возникла проблема эффективности доступа к этим данным. Вторая необходима проблема — это само сохранение информации (и программ, и данных). Имеется в виду, сам факт долгосрочного хранения информации.
С точки зрения аппаратной поддержки можно выделить следующие этапы развития. Одним из первых внешних запоминающих устройств (ВЗУ) была магнитная лента. Магнитная лента — это устройство последовательного доступа, информация на котором хранится в виде записей (фиксированного или переменного размера). Запись структурно состоит из последовательности содержательной информации, ограниченной маркерами начала и конца записи. Для доступа к информации необходимо иметь номер соответствующей записи на ленте. Соответственно, если пользователь хотел сохранять данные на магнитной ленте, то ему было необходимо знать магнитную ленту как носитель (по номеру или по расположению в хранилище, и т.п.) и номер своей записи на этой ленте. Отметим, что относительно эффективная работа с лентой может быть достигнута лишь при персональном использовании: в случае, когда одновременно с одной лентой работают два пользователя, возникают достаточно большие накладные расходы (в частности, частое перематывание ленты на начало), что может привести даже к ее порче (разрыву). Решение проблемы корректности организации данных на магнитной ленте лежало на пользователе: если пользователь некорректно организовал запись своих данных, то он мог тем самым испортить и свои данные, и чужие записи на ленте.
На следующем этапе развития появились устройства прямого доступа (барабаны и магнитные диски), что естественно сказалось на адресации данных на носителе. Например, чтобы получить доступ к информации на диске, достаточно знать номер диска, номер поверхности, номер цилиндра и номер сектора. Но каждое устройство прямого доступа имело и свои особенности — в частности, размеры блока: у одних дисков блоки имели размер 256 байт, у других — 512 байт, и т.д. И эти особенности должен был учитывать пользователь при работе с данными устройствами. Чтобы разместить свой файл на диске, пользователь должен был разбить этот файл на блоки (в зависимости от конкретного устройства хранения), найти на диске свободные блоки, чтобы в них разместить весь свой файл, сохранить файл и запомнить координаты и последовательность блоков, в которых был сохранен файл. Заметим, что диски ориентированы на массовое использование, т.е. предполагается работа с ним двух и более пользователей, что накладывало дополнительные трудности на корректное размещение данных на диске — задачу, совершенно нетривиальную для рядового пользователя.
Подобный подход к хранению данных продлился примерно до середины 60-х — начала 70-х годов, когда в машинах второго поколения появился программный компонент операционной системы, который получил название файловая система. Повторимся, файловая система — это компонент операционной системы, обеспечивающий корректный именованный доступ к данным пользователя. Данные в файловой системе представляются в виде файлов, каждый из которых имеет имя. Главными словами в определении файловой системы являются именованный доступ и корректная работа. Последнее означает, что файловая система обеспечивает корректное управление свободным и занятым пространством на ВЗУ (заметим, что не обязательно на физическом устройстве: в качестве ВЗУ может выступить и виртуальное устройство), а также защиту от несанкционированного доступа к информации. Большинство современных файловых систем обеспечивают корректную организацию распределенного доступа к одному и тому же файлу (когда с ним могут работать два и более пользователя). Это не означает, что система будет отвечать за корректную семантику данных внутри файла: гарантируется, что система обеспечит корректный доступ пользователей к файлу с точки зрения системной организации. Также многие современные файловые системы поддерживают возможность синхронизации доступа к информации.