
- •Содержание
- •1 Введение 5
- •2 Управление процессами 87
- •3 Реализация межпроцессного взаимодействия в ос Unix 114
- •4 Файловые системы 152
- •4.1 Основные концепции 152
- •5 Управление оперативной памятью 181
- •6 Управление внешними устройствами 196
- •Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •Основы архитектуры вычислительной системы
- •Структура вс
- •Структура вычислительной системы.
- •Аппаратный уровень вс
- •Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •Управление логическими/виртуальными ресурсами
- •Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •Выводы, литература
- •Структура организации вычислительной системы.
- •Основы компьютерной архитектуры
- •Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •Центральный процессор
- •Структура организации центрального процессора.
- •Регистровая память
- •Устройство управления. Арифметико-логическое устройство
- •Общая схема работы кэШа.
- •Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •Внешние устройства
- •Внешние устройства.
- •Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •Иерархия памяти
- •Иерархия памяти.
- •Аппаратная поддержка операционной системы и систем программирования
- •Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •Системный стек
- •Системный стек.
- •Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •Терминальные комплексы (тк)
- •Терминальные комплексы.
- •Компьютерные сети
- •Компьютерные сети.
- •Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •Основы архитектуры операционных систем
- •Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •Логические функции ос
- •Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •Управление процессами
- •Основные концепции
- •Модели операционных систем
- •Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •Контекст процесса
- •Реализация процессов в ос Unix
- •Процесс ос Unix
- •Разделение сегмента кода.
- •Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •Планирование
- •Взаимодействие процессов
- •Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •Способы организации взаимного исключения
- •Пример двоичного семафора.
- •Классические задачи синхронизации процессов
- •Обещающие философы.
- •Реализация межпроцессного взаимодействия в ос Unix
- •Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •Сигналы
- •Неименованные каналы
- •Именованные каналы
- •Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •Разделяемая память ipc
- •Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •Сокеты — унифицированный интерфейс программирования распределенных систем
- •Файловые системы
- •Основные концепции
- •Структурная организация файлов
- •Атрибуты файлов
- •Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •Модели реализации каталогов
- •Модели организации каталогов.
- •Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •Координация использования пространства внешней памяти
- •Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •Надежность файловой системы
- •Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •Примеры реализаций файловых систем
- •Организация файловой системы ос Unix. Виды файлов. Права доступа
- •Логическая структура каталогов
- •Логическая структура каталогов.
- •Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •Работа с массивом свободных индексных дескрипторов
- •Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •Достоинства и недостатки файловой системы модели System V
- •Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •Выделение пространства для файла
- •Выделение пространства для файла.
- •Структура каталога ffs
- •Структура каталога ffs bsd.
- •Блокировка доступа к содержимому файла
- •Управление оперативной памятью
- •Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •Сегментное распределение
- •Сегментное распределение.
- •Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •Управление внешними устройствами
- •Общие концепции
- •Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •Работа с внешними устройствами в ос Unix
- •Файлы устройств, драйверы
- •Системные таблицы драйверов устройств
- •Ситуации, вызывающие обращение к функциям драйвера
- •Включение, удаление драйверов из системы
- •Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •Буферизация при блок-ориентированном обмене
- •Борьба со сбоями
-
Пример зависимости от драйвера.
Таким образом, на уровне управления физическими ресурсами (устройствами) вычислительной системы пользователю доступна система команд компьютера, а также интерфейсы драйверов физических устройств компьютера.
Появление уровня управления физическими устройствами упростило процесс адаптации программы для работы с различными типами и разновидностями устройств, а также существенно повысило надежность программирования и снизило уровень требований к программисту о знании специфики управления конкретными устройствами. Однако использование исключительно уровня драйверов физических устройств оставило ряд специфических проблем:
-
программист должен быть «знаком» со всеми интерфейсами драйверов используемых физических устройств;
-
программы пользователей, использующие конкретные драйверы физических устройств, должны модифицироваться каждый раз, когда возникает необходимость использовать другие физические устройства данного типа (это работа несоизмеримо проще той, которая выполнялась, когда внешнее устройство непосредственно программировалось в программе пользователя, но, тем не менее, в программу необходимо внести изменения, позволяющие использовать другой драйвер с другими интерфейсами).
-
Управление логическими/виртуальными ресурсами
Развитием системного программного обеспечения стало появление уровня управления логическими, или виртуальными, ресурсами (или устройствами). В основу этого уровня легло обобщение особенностей физических устройств одного вида и создание драйверов, имеющих единые интерфейсы, посредством которых осуществляется доступ к различным физическим устройствам одного типа. Для этих целей в современных вычислительных системах предусмотрена возможность программного создания и использования т.н. логических, или виртуальных, ресурсов (виртуальное —нечто реально не существующее, не имеющее реальной, физической организации). Логическое/виртуальное устройство (ресурс) — это устройство/ресурс, некоторые эксплутационные характеристики которого (возможно все) реализованы программным образом. Современные вычислительные системы позволяют создавать разнообразные логические/виртуальные устройства и соответствующие им драйверы. Драйвер логического/виртуального ресурса — это программа, обеспечивающая существование и использование соответствующего ресурса. Для этих целей при его реализации возможно использование существующих драйверов физических и виртуальных устройств. Возможно построение достаточно развитой иерархии логических устройств. Например, на рисунке изображена упрощенная схема организации ввода-вывода в системе. Она включает в себя многоуровневую иерархию виртуальных и физических устройств и соответствующих им драйверов, по степени обобщения которых можно выделить следующие группы.
-
Драйверы физических устройств — обеспечивают доступ к конкретным физическим устройствам. Например, драйвер жесткого диска фирмы IBM модели Deskstar или драйвер жесткого диска фирмы Seagate модели Barracuda 3. Каждый из данных драйверов имеет особенности, характеризующие конкретное устройство, отраженные в соответствующем интерфейсе.
-
Драйверы виртуальных устройств определенного типа (например, драйвер виртуального диска), предоставляют обобщенные интерфейсы доступа к разнообразным физическим устройствам данного типа. Данные драйверы имеют связи с драйверами конкретных физических устройств данного типа. Запрос к данному драйверу виртуального устройства обычно транслируется драйверу конкретного физического устройства и, в конечном итоге, управляющие команды получит само устройство. Кроме того, возможна «реализация» виртуального устройства определенного типа на устройствах других типов, например, возможна организация работы с виртуальным диском, реализованном на пространстве оперативной памяти, в этом случае драйвер виртуального устройства имеет связь с драйверами физических устройств других типов.
-
Драйверы виртуальных устройств, которым затруднительно поставить в соответствие физическое устройство или группу физических устройств определенного типа. Примером могут служить драйверы различных файловых систем (файловая система — программный компонент вычислительной системы, обеспечивающий именованное хранение и доступ к данным).
Основным результатом появления уровня управления виртуальными устройствами вычислительной системы стала многоуровневая унификация интерфейсов доступа к ресурсам вычислительной системы, что существенно упростило проблему программирование устройств компьютера, а также предоставило качественно новые возможности в функционировании вычислительных систем и в создании их программного обеспечения. Примером могут служить файловые системы, которые обеспечивают простые и надежные интерфейсы именованного хранения и использования данных, полностью скрывая от пользователя проблемы ее внутренней организации. К примеру, пользователь современной вычислительной системы может не только не знать, на каком внешнем запоминающем устройстве размещены данные его файлов, он может не знать и территориальное расположение и тип компьютера, на котором хранятся его данные. Существенное развитие получили средства управления виртуальными устройствами (ресурсами), которые обеспечивают контроль за созданием и использованием ресурсов вычислительной системы.
-
Схема организации ввода-вывода в системе.
Итак, мы рассмотрели два первых программных уровня структуры вычислительной системы — это уровни, обеспечивающие функционирование ресурсов в вычислительной системе. Под ресурсами вычислительной системы мы будем понимать совокупность всех физических и виртуальных ресурсов. Одной из характеристик ресурсов вычислительной системы является их конечность. То есть рано или поздно в системе возникает конкуренция за обладание ресурсом между его программными потребителями. При этом если речь идет о таком виртуальном ресурсе, как файловая система, то конечным является размер файловой системы на устройствах хранения данных, ограничения на предельное количество зарегистрированных в файловой системе файлов. Именно за эти параметры возможно возникновение конкуренции при использовании файловой системы. А теперь попытаемся вернуться к проблеме определения понятия операционной системы. Операционная система — это комплекс программ, обеспечивающий управление ресурсами вычислительной системы. Это основная концепция данного понятия. Позднее мы будем уточнять это определение, рассматривать отдельные функции ОС. В структурной организации вычислительной системы операционная система представляется уровнями управления физическими и виртуальными ресурсами.
С точки зрения средств программирования, доступных на уровне управления виртуальными ресурсами, пользователю предоставляются система команд компьютера, а также интерфейсы, обеспечивающие доступ к устройствам компьютера (как физическим, так и виртуальным). Доступная пользователю совокупность интерфейсов устройств компьютера может включать в себя как аппаратные интерфейсы доступа к устройствам, так и драйверы физических и/или виртуальных устройств. Конкретный состав интерфейсов определяется свойствами вычислительной системы, соответствующими, уровнями управления ресурсами, а также привилегиями пользователя (об этом подробнее мы будем говорить несколько позднее).