
- •Содержание
- •1 Введение 5
- •2 Управление процессами 87
- •3 Реализация межпроцессного взаимодействия в ос Unix 114
- •4 Файловые системы 152
- •4.1 Основные концепции 152
- •5 Управление оперативной памятью 181
- •6 Управление внешними устройствами 196
- •Введение
- •Пакетная обработка заданий.
- •Развитие языков и систем программирования.
- •Этапы эволюции.
- •Основы архитектуры вычислительной системы
- •Структура вс
- •Структура вычислительной системы.
- •Аппаратный уровень вс
- •Управление физическими ресурсами вс
- •Пример зависимости от драйвера.
- •Управление логическими/виртуальными ресурсами
- •Системы программирования
- •Этапы проектирования.
- •Кодирование.
- •Тестирование.
- •Каскадная модель.
- •Каскадная итерационная модель.
- •Спиральная модель.
- •Прикладные системы
- •Первый этап развития прикладных систем.
- •Второй этап развития прикладных систем.
- •Третий этап развития прикладных систем.
- •Пакет программ Microsoft Office.
- •Пакет MathCad.
- •Система BaaN.
- •Выводы, литература
- •Структура организации вычислительной системы.
- •Основы компьютерной архитектуры
- •Структура, основные компоненты
- •Структура компьютера фон Неймана.
- •Базовая архитектура современных компьютеров.
- •Оперативное запоминающее устройство
- •Ячейка памяти.
- •Контроль четности.
- •Озу без расслоения памяти — один контроллер на все банки.
- •Озу с расслоением памяти — каждый банк обслуживает отдельный контроллер.
- •Центральный процессор
- •Структура организации центрального процессора.
- •Регистровая память
- •Устройство управления. Арифметико-логическое устройство
- •Общая схема работы кэШа.
- •Аппарат прерываний
- •Использование иерархической модели регистров прерывания.
- •Использование вектора прерываний.
- •Этап программной обработки прерываний.
- •Внешние устройства
- •Внешние устройства.
- •Внешние запоминающие устройства
- •Магнитная лента.
- •Принцип устройства магнитного диска.
- •Принцип устройства магнитного барабана.
- •Принцип устройства памяти на магнитных доменах.
- •Модели синхронизации при обмене с внешними устройствами
- •Синхронная и асинхронная работа с ву.
- •Потоки данных. Организация управления внешними устройствами
- •Непосредственное управление центральным процессором внешнего устройства.
- •Синхронное/асинхронное управление внешними устройствами с использованием контроллеров внешних устройств.
- •Использование контроллера прямого доступа к памяти (dma) или процессора (канала) ввода-вывода при обмене.
- •Иерархия памяти
- •Иерархия памяти.
- •Аппаратная поддержка операционной системы и систем программирования
- •Требования к аппаратуре для поддержки мультипрограммного режима
- •Мультипрограммный режим.
- •Проблемы, возникающие при исполнении программ
- •Вложенные обращения к подпрограммам.
- •Перемещаемость программы по озу.
- •Фрагментация памяти.
- •Регистровые окна
- •Регистровые окна.
- •Регистровые окна. Вход и выход из подпрограммы.
- •Системный стек
- •Системный стек.
- •Виртуальная память
- •Страничная организация памяти.
- •Страничная организация памяти. Преобразование виртуального адреса в физический.
- •Страничная организация памяти. Схема преобразования адресов.
- •Многомашинные, многопроцессорные ассоциации
- •Классификация мкмд.
- •Numa-система.
- •Терминальные комплексы (тк)
- •Терминальные комплексы.
- •Компьютерные сети
- •Компьютерные сети.
- •Организация сетевого взаимодействия. Эталонная модель iso/osi
- •Модель организации взаимодействия в сети iso/osi.
- •Логическое взаимодействие сетевых устройств по I-ому протоколу.
- •Семейство протоколов tcp/ip. Соответствие модели iso/osi
- •Семейство протоколов tcp/ip.
- •Взаимодействие между уровнями протоколов tcp/ip.
- •Система адресации протокола ip.
- •Маршрутизация дейтаграмм.
- •Основы архитектуры операционных систем
- •Структура ос
- •Структурная организация ос.
- •Структура ос с монолитным ядром.
- •Структура ос с микроядерной архитектурой.
- •Логические функции ос
- •Типы операционных систем
- •Структура сетевой ос.
- •Структура распределенной ос.
- •Управление процессами
- •Основные концепции
- •Модели операционных систем
- •Типы процессов
- •Типы процессов: однонитевая (а) и многонитевая (б) организации.
- •Контекст процесса
- •Реализация процессов в ос Unix
- •Процесс ос Unix
- •Разделение сегмента кода.
- •Базовые средства управления процессами в ос Unix
- •Пример использования системного вызова fork().
- •Пример использования системного вызова execl().
- •Пример использования схемы fork-exec.
- •Жизненный цикл процесса. Состояния процесса
- •Жизненный цикл процессов.
- •Формирование процессов 0 и 1
- •Формирование нулевого и первого процессов.
- •Инициализация системы.
- •Планирование
- •Взаимодействие процессов
- •Разделяемые ресурсы и синхронизация доступа к ним
- •Гонка процессов.
- •Пример тупиковой ситуации (deadlock).
- •Способы организации взаимного исключения
- •Пример двоичного семафора.
- •Классические задачи синхронизации процессов
- •Обещающие философы.
- •Реализация межпроцессного взаимодействия в ос Unix
- •Базовые средства реализации взаимодействия процессов в ос Unix
- •Способы организации взаимодействия процессов.
- •Сигналы
- •Неименованные каналы
- •Именованные каналы
- •Модель межпроцессного взаимодействия «главный–подчиненный»
- •Общая схема трассировки процессов.
- •Система межпроцессного взаимодействия ipc (Inter-Process Communication)
- •Очередь сообщений ipc
- •Очередь сообщений ipc.
- •0666 Определяет права доступа */
- •Разделяемая память ipc
- •Массив семафоров ipc
- •Int val; /* значение одного семафора */
- •Сокеты — унифицированный интерфейс программирования распределенных систем
- •Файловые системы
- •Основные концепции
- •Структурная организация файлов
- •Атрибуты файлов
- •Основные правила работы с файлами. Типовые программные интерфейсы
- •Модель одноуровневой файловой системы.
- •Модель двухуровневой файловой системы.
- •Модель иерархической файловой системы.
- •Подходы в практической реализации файловой системы
- •Структура «системного» диска.
- •Модели реализации файлов
- •Модель непрерывных файлов.
- •Модель файлов, имеющих организацию связанного списка.
- •Модели реализации каталогов
- •Модели организации каталогов.
- •Соответствие имени файла и его содержимого
- •Пример жесткой связи.
- •Пример символической связи.
- •Координация использования пространства внешней памяти
- •Квотирование пространства файловой системы
- •Квотирование пространства файловой системы.
- •Надежность файловой системы
- •Проверка целостности файловой системы
- •Проверка целостности файловой системы. Непротиворечивость файловой системы соблюдена.
- •Проверка целостности файловой системы. Зафиксирована пропажа блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование свободного блока.
- •Проверка целостности файловой системы. Зафиксировано дублирование занятого блока.
- •Проверка целостности файловой системы. Контроль жестких связей.
- •Примеры реализаций файловых систем
- •Организация файловой системы ос Unix. Виды файлов. Права доступа
- •Логическая структура каталогов
- •Логическая структура каталогов.
- •Внутренняя организация файловой системы: модель версии System V
- •Структура файловой системы версии System V.
- •Работа с массивами номеров свободных блоков
- •Работа с массивами номеров свободных блоков.
- •Работа с массивом свободных индексных дескрипторов
- •Индексные дескрипторы. Адресация блоков файла
- •Индексные дескрипторы.
- •Адресация блоков файла.
- •Файл-каталог
- •Файл-каталог.
- •Установление связей.
- •Достоинства и недостатки файловой системы модели System V
- •Внутренняя организация файловой системы: модель версии Fast File System (ffs) bsd
- •Структура файловой системы версии ffs bsd.
- •Стратегии размещения
- •Стратегия размещения последовательных блоков файлов.
- •Внутренняя организация блоков
- •Внутренняя организация блоков (блоки выровнены по кратности).
- •Выделение пространства для файла
- •Выделение пространства для файла.
- •Структура каталога ffs
- •Структура каталога ffs bsd.
- •Блокировка доступа к содержимому файла
- •Управление оперативной памятью
- •Одиночное непрерывное распределение
- •Одиночное непрерывное распределение.
- •Распределение неперемещаемыми разделами
- •Распределение неперемещаемыми разделами.
- •Распределение перемещаемыми разделами
- •Распределение перемещаемыми разделами.
- •Страничное распределение
- •Страничное распределение.
- •Иерархическая организация таблицы страниц.
- •Использование хеш-таблиц.
- •Инвертированные таблицы страниц.
- •Замещение страниц. Алгоритм «Часы».
- •Сегментное распределение
- •Сегментное распределение.
- •Сегментно-страничное распределение
- •Сегментно-страничное распределение. Упрощенная модель Intel.
- •Управление внешними устройствами
- •Общие концепции
- •Архитектура организации управления внешними устройствами
- •Модели управления внешними устройствами: непосредственное (а), синхронное/асинхронное (б), с использованием контроллера прямого доступа или процессора (канала) ввода-вывода.
- •Программное управление внешними устройствами
- •Иерархия архитектуры программного управления внешними устройствами.
- •Планирование дисковых обменов
- •Планирование дисковых обменов. Модель fifo.
- •Планирование дисковых обменов. Модель lifo.
- •Планирование дисковых обменов. Модель sstf.
- •Планирование дисковых обменов. Модель scan.
- •Планирование дисковых обменов. Модель c-scan.
- •Raid-системы. Уровни raid
- •Raid 2. Избыточность с кодами Хэмминга (Hamming, исправляет одинарные и выявляет двойные ошибки).
- •Raid 3. Четность с чередующимися битами.
- •Raid 5. Распределенная четность (циклическое распределение четности).
- •Работа с внешними устройствами в ос Unix
- •Файлы устройств, драйверы
- •Системные таблицы драйверов устройств
- •Ситуации, вызывающие обращение к функциям драйвера
- •Включение, удаление драйверов из системы
- •Организация обмена данными с файлами
- •Организация обмена данными с файлами.
- •Буферизация при блок-ориентированном обмене
- •Борьба со сбоями
-
Система адресации протокола ip.
Формат класса A позволяет задавать адреса до 126 сетей с 16 млн. хостов в каждой, класса B — до 16382 сетей с 64 Кбайт хостами, и, наконец, класса C — 2 млн. сетей с 254 хостами в каждой. Формат класса D предназначен для многоадресной рассылки. Остальные адреса используются для служебных целей. Отметим, что на сегодняшний момент в мире складывается ситуация, когда 32-битных IP-адресов не хватает, и ведутся разработки по использованию более длинной адресации.
Как отмечалось выше, каждый из уровней взаимодействует с соседними уровнями в соответствии с теми или иным протоколами порциями данных, имеющими специфичными для каждого уровня названия. Так, для межсетевого уровня пакет называется дейтограммой.
Протокол IP подразумевает использование некоторых специализированных компьютеров. Это компьютеры, предназначенные для организации физического объединения различных сетей, и они называются шлюзами. В общем случае шлюз имеет два и более сетевых адаптера, на которых функционирует соответствующее число (два или более) стеков протоколов.
Перед межсетевым уровнем также стоит задача маршрутизации — определить по имеющему IP-адресу получателя определить маршрут следования пакета. Эта задача распадается на две подзадачи. Первая подзадача — это проблема организации адресации в локальной сети, в рамках которой происходит взаимодействие. И здесь особых сложностей не возникает, поскольку специфика межсетевого уровня позволяет относительно просто организовать взаимодействие машин в рамках одной локальной сети. Вторая подзадача — это организация адресации между различными сетями. Для решения этой задачи используются шлюзы, которые одновременно принадлежат разным сетям, а также маршрутизаторы, которые решают задачу, через какой шлюз необходимо отправить пакет. Отметим, что стек протоколов TCP/IP позволяет совмещать компьютерам несколько функций: одна и та же машина может быть одновременно и шлюзом, и маршрутизатором, и хостом, причем работающий за ним пользователь может не догадываться об организации локальной сети, в которой он работает.
Рассмотрим пример (Рис. 63.). Пускай необходимо послать сообщение от машины A1 машине A2. Машина A1 находится в сети A, а машина A2 — в сети C, причем сеть A соединена лишь с сетью B посредством шлюза G1, а сеть C соединена также лишь с сетью B, но посредством шлюза G2. Соответственно, маршрутизатор должен учитывать эти особенности при решении задачи маршрутизации. Обратим ваше внимание, что на компьютерных шлюзах реализовано только два уровня протоколов, поскольку для решения задачи транспортировки пакетов из одной сети в другую достаточны лишь наличие этих двух уровней.
-
Маршрутизация дейтаграмм.
Транспортный уровень. Одним из важнейших протоколов данного уровня является протокол TCP (Transmission Control Protocol — протокол управления передачей данных), который, равно как и протокол IP, дал свое название всему семейству протоколов. Этот протокол послужил некоторым «прародителем» этого семейства протоколов, поскольку Министерство Обороны США, когда начинало исследование ARPA-NET, ставило перед собой задачу разработку сети, устойчивой к недетерминированной физической среде передачи данных. И одним из условий было, чтобы полученная сеть работала корректно как на линиях с устойчивой передачей данных (в которых количество ошибок мало), так и на линиях, в которых возникает большое число ошибок. Это требование и его реализация обусловило распространение семейства протоколов TCP/IP и, в общем-то, развитие современных сетей, поскольку проблема дисбаланс различных сетей с точки зрения надежности каналов актуальна и по сей день, а разработанные протоколы решали эту проблему.
Среди протоколов транспортного уровня необходимо отметить протоколы TCP и UDP. Протокол TCP — это протокол, обеспечивающий установление виртуального канала, а это означает, что он обеспечивает последовательную передачу пакетов, контролирует доставку пакетов и отрабатывает сбои (пакет либо не доставляется, либо доставляется в целостном состоянии). Для обеспечения заявленных качеств данный протокол подразумевает отправку по сети подтверждающей информации, из-за чего содержательная пропускная способность может сильно падать, особенно в линиях связи с плохими техническими характеристиками. Итак, этот протокол подразумевает, что для каждого полученного пакета адресат обязан отправить подтверждение о доставке. К этому необходимо доставить, что в данном протоколе действует поддержка времени: если через некоторое время после отправки пакета подтверждение так и не пришло, то считается, что отправленный пакет пропал, и начинается повторная посылка пропавшего пакета.
Некоторой альтернативой служит протокол UDP (User Datagram Protocol — протокол пользовательских дейтаграмм). Данный протокол подразумевает отправку пакетов по сети без гарантии их доставки (он выбрасывает пакет и сразу же «забывает» о нем).
Уровень прикладных программ. На этом уровне находятся протоколы, часть которых опираются на протокол TCP, а часть — на UDP.
Протоколы, которые основываются на принципах работы протокола TCP, обеспечивают доступ и работу с заведомо корректной информацией, причем именно в среде межсетевого взаимодействия (internet), и эти протоколы требуют корректной доставки. В частности, это протокол TELNET (Network Terminal Protocol) — прикладной протокол, эмулирующий терминальное устройство; протокол перемещения файлов FTP (File Transfer Protocol); протокол передачи почтовых сообщений SMTP (Simple Mail Transfer Protocol).
Есть ряд прикладных протоколов, основанных на использовании протокола UDP. Эти протоколы оказываются относительно быстрыми, поскольку максимально снижены накладные расходы на передачу, но они допускают наличие ошибок.
Часть подобных протоколов действуют в рамках локальной сети. В частности, в большинстве случаев протокол NFS (Network File System) сетевой файловой системы функционирует именно в рамках локальной сети, и очень редко его запускают в межсетевом режиме.
Другая часть протоколов должны контролироваться, с одной стороны, на прикладном уровне, а с другой стороны, они предполагают обмен очень небольшими порциями данных. К таким протоколам относится DNS (Domain Name Service), который позволяет мнемоническим способом именовать сетевые устройства. В частности, этот протокол осуществляет преобразования IP-адресов в доменные имена и обратно.