
- •Организация эвм
- •1. Принципы джона фон нейман. Поколения эвм
- •1.1. Принципы Джона фон Нейман
- •1.2. Поколения эвм: от ламп к интегральным микросхемам
- •1.2.1. Первое поколение эвм (1948 — 1958гг.)
- •1.2.2. Второе поколение эвм (1959 — 1967 гг.)
- •1.2.3. Третье поколение эвм (1968 — 1973 гг.)
- •Четвертое и пятое поколения эвм (1974 — настоящее время)
- •2. Архитектура технических средств
- •2.1.Микропроцессор
- •2. Краткие сведения об остальных компонентах компьютера
- •2.3. Функциональное назначение
- •2.4. Использование разъемов расширения
- •2.5. Совместимость блоков расширения
- •3. Классификация компьютеров по областям применения
- •3.1. Персональные компьютеры и рабочие станции
- •3.3. Серверы
- •3.4. Мейнфреймы
- •3.5. Кластерные архитектуры
- •4. Система прерываний
- •4.1. Общие сведения
- •4.2. Обработка прерываний.
- •4.3. Программирование контроллера прерываний
- •4.4. Обработка прерываний в реальном режиме
- •5. Иерархия памяти
- •5.1. Организация кэш-памяти
- •5.1.1. Где может размещаться блок в кэш-памяти?
- •5.1.2. Как найти блок, находящийся в кэш-памяти?
- •5.1.3. Какой блок кэш-памяти должен быть замещен при промахе?
- •5.1.4. Что происходит во время записи?
- •5.2.2. Развитие оперативной памяти
- •5.2.3. Установка оперативной памяти
- •5.3. Виртуальная память и организация защиты памяти
- •5.3.1. Концепция виртуальной памяти
- •5.3.2. Страничная организация памяти
- •5.3.3 Сегментация памяти
- •6. Организация ввода/вывода
- •6.1. Системные и локальные шины
- •6.2. Стандарты шин
- •6.3. Устройства ввода/вывода
- •6.3.1. Магнитные и магнитооптические диски
- •6.3.2. Дисковые массивы и уровни raid
- •6.3.3. Устройства архивирования информации
- •7. Многопроцессорные и многомашинные системы
- •7.1. Классификация эвм параллельной обработки
- •7.2. Модели связи и архитектуры памяти
- •8. Конвейерная обработка
- •8.1. Параллелизм и конвейеризация
- •8.2. Оценка производительности идеального конвейера
- •8.3. Конфликты в конвейере и способы минимизации их влияния на производительность процессора
- •8.3.1. Структурные конфликты
- •8.3.2. Конфликты по управлению
- •8.3.3. Конфликты по данным
- •9. Периферийные устройства
- •9.1. Принтеры
- •9.2. Мыши
- •9.3. Модемы
- •9.4. Сканеры
- •9.5. Накопители на жестких магнитных дисках
- •9.6. Накопители на гибких магнитных дисках
- •9.7. Накопители на компакт-дисках
- •9.8. Магнитооптические диски
- •9.9. Стримеры
- •9.10. Дигитайзеры
- •9.11. Плоттеры
- •9.12 Видеобластеры
- •9.13. Звуковые платы
- •9.14. Акустические системы
- •9.15. Трекболы
- •9.16 Джойстики
- •9.17. Источники бесперебойного питания.
- •Оглавление
9.15. Трекболы
Трекбол (рис. 9.5.) – это устройство ввода информации, которое можно представить в виде перевернутой мыши с шариком большого размера. Принцип действия и способ передачи данных трекбола такой же, как и мыши. Наиболее часто используется оптико-механический принцип регистрации положения шарика. Подключение трекбола, как правило, осуществляется через последовательный порт.
Рисунок 9.5.
Трекбол
Основные отличия от мыши:
– стабильность положения за счет неподвижного корпуса;
– отсутствие площадки для движения, так как позиция курсора рассчитывается по вращению шарика.
Трекбол чаще всего используют в компактных компьютерах Laptop или Notebook.
9.16 Джойстики
Джойстик является координатным устройством ввода информации и наиболее часто применяется в области компьютерных игр и компьютерных тренажеров. В компьютерных тренажерах обычно используются аналоговые джойстики, в то время как в игровых компьютерах – цифровые. Аналоговые джойстики обеспечивают более точное управление, что очень важно для программных приложений, в которых объекты должны точно позиционироваться.
Для удобства работы конструкция джойстика должна быть достаточно прочной и устойчивой. Джойстик подключают к внешнему разъему карты расширения, имеющей соответствующий порт.
9.17. Источники бесперебойного питания.
Источники бесперебойного питания (UPS) предназначены для защиты компьютера от сетевых помех, основными из которых являются высоковольтные импульсные броски напряжения (до 3 кВ), долговременное падение напряжения до 150-170 В, периодические спады напряжения при подключении мощного оборудования, нестабильность частоты, аварийное отключение питания и т.п.
Необходимость в источниках бесперебойного питания возникает в тех случаях, когда проблема работоспособности персонального компьютера и сохранения данных стоит наиболее остро. В зависимости от принципа действия различают три типа UPS.
1) UPS архитектуры «off-line». Сетевое напряжение, пройдя через сетевой фильтр, попадает на вход компьютера и одновременно заряжает аккумулятор, который подключается к входу компьютера в случае отключения сетевого напряжения.
2) UPS архитектуры «on-line». В них входное переменное напряжение преобразуется в постоянное и поступает на высокочастотный преобразователь и далее на инвертор и с него на вход компьютера. Зарядное устройство и аккумулятор подключены непосредственно к выходу UPS. Такая конструкция обеспечивает гальваническую развязку между промышленной сетью и блоком питания компьютера и наиболее качественную защиту питания компьютера.
3) UPS гибридной архитектуры (line interactive UPS). У таких источников отсутствует высокочастотный преобразователь, а инвертор постоянно подключен к выходу, благодаря чему обеспечивается гальваническая развязка.
На сегодняшний день существует множество модификаций программируемых UPS, которые связываются с компьютером при помощи витой пары или нуль-модема, что позволяет считать их также компьютерной периферией. Некоторые реализации программного обеспечения современных UPS позволяют корректно завершить работу всех приложение на подключенном компьютере, разослать сообщения всем пользователям сети, выдать сообщение через телефонную линию на пейджер администратора компьютерной сети и т.д.