
- •Диференціальне числення функції однієї змінної. Похідна функції, її геометричний і фізичний зміст.
- •Однобічні похідні функції в точці.
- •Похідна показниково-степеневої функції.
- •Похідна оберненої функцій.
- •Диференціал функції.
- •Формула Тейлора.
- •Формула Маклорена.
- •Подання деяких елементарних функцій за формулою Тейлора.
- •Застосування диференціала до наближених обчислень.
- •Теореми про середнє. Теорема Ролля.
- •Теорема Лагранжа.
- •Теорема Коші.
- •Розкриття невизначеностей. Правило Лопіталя.
- •Точки екстремуму.
- •Дослідження функції на екстремум за допомогою похідних вищих порядків.
- •Опуклість і увігнутість кривої. Точки перегину.
- •Асимптоти.
- •Вертикальні асимптоти.
- •Похилі асимптоти.
- •Векторна функція скалярного аргументу.
- •Властивості похідної векторної функції скалярного аргументу.
- •Параметричне задання функції.
- •Рівняння деяких типів кривих у параметричній формі. Коло.
- •Циклоїда.
- •Астроїда.
- •Похідна функції, заданої параметрично.
- •Кривизна плоскої кривої.
- •Властивості еволюти.
- •Кривизна просторової кривої.
- •Про формули Френе.
- •Інтегральне числення. Первісна функція.
- •Невизначений інтеграл.
- •Методи інтегрування.
- •Безпосереднє інтегрування.
- •Спосіб підстановки (заміни змінних).
- •Інтегрування частинами.
- •Інтегрування елементарних дробів.
- •Інтегрування раціональних функцій. Інтегрування раціональних дробів.
- •Інтегрування деяких тригонометричних функцій.
- •Інтеграл виду .
- •Інтеграл виду , якщо функція r є непарною відносно cos X.
- •Інтегрування деяких ірраціональних функцій.
- •Інтеграл виду де n – натуральне число.
- •Інтегрування біноміальних диференціалів.
- •Інтеграли виду .
- •1 Спосіб. Тригонометрична підстановка.
- •2 Спосіб. Підстановки Ейлера. (1707–1783)
- •3 Спосіб. Метод невизначених коефіцієнтів.
- •Кілька прикладів інтегралів, що не виражаються через елементарні функції.
- •Визначений інтеграл.
- •Властивості визначеного інтеграла.
- •Обчислення визначеного інтеграла.
- •Заміна змінних.
- •Інтегрування частинами.
- •Наближене обчислення визначеного інтеграла.
- •Формула прямокутників.
- •Формула трапецій.
- •Формула парабол
- •Невласні інтеграли.
- •Інтеграл від розривної функції.
- •Геометричні застосування визначеного інтеграла. Обчислення площ плоских фігур.
- •Знаходження площі криволінійного сектора.
- •Обчислення довжини дуги кривої.
- •Обчислення об'ємів тіл. Обчислення об'єму тіла за відомими площами його паралельних перетинів.
- •Об'єм тіл обертання.
- •Площа поверхні тіла обертання.
- •Функції декількох змінних
- •Похідні й диференціали функцій декількох змінних.
- •Повний приріст і повний диференціал.
- •Геометричний зміст повного диференціала. Дотична площина й нормаль до поверхні.
- •Наближені обчислення за допомогою повного диференціала.
- •Частинні похідні вищих порядків.
- •Екстремум функції декількох змінних.
- •Умовний екстремум.
- •Похідна за напрямком.
- •Градієнт.
- •Зв'язок градієнта з похідною за напрямком.
- •Кратні інтеграли.
- •Подвійні інтеграли.
- •Умови існування подвійного інтеграла.
- •Властивості подвійного інтеграла.
- •Обчислення подвійного інтеграла.
- •Заміна змінних у подвійному інтегралі.
- •Подвійний інтеграл у полярних координатах.
- •Потрійний інтеграл.
- •Заміна змінних у потрійному інтегралі.
- •Циліндрична система координат.
- •Сферична система координат.
- •Геометричні й фізичні застосування кратних інтегралів.
Інтеграл виду , якщо функція r є непарною відносно cos X.
Незважаючи на можливість обчислення такого інтеграла за допомогою універсальної тригонометричної підстановки, раціональніше застосувати підстановку t = sin x.
Функція
може містити cos
x тільки
в парних ступенях, а отже, може бути
перетворена в раціональну функцію
відносно sin
x.
Приклад.
Загалом кажучи, для застосування цього методу необхідна тільки непарність функції щодо косинуса, а ступінь синуса, що входить у функцію може бути кожний, як цілої, так і дробової.
Інтеграл
виду
,
якщо
функція R є непарною відносно sin x.
За аналогією з розглянутим вище випадком робиться підстановка t = cos x.
Тоді
Приклад.
Інтеграл
виду
функція R парна відносно sin x і cos x.
Для перетворення функції R у раціональну використається підстановка t = tgx.
Тоді
Приклад.
Інтеграл добутку синусів і косинусів
різних аргументів.
Залежно від типу добутку застосуються одна із трьох формул:
Приклад.
Приклад.
Іноді при інтегруванні тригонометричних функцій зручно використати загальновідомі тригонометричні формули для зниження порядку функцій.
Приклад.
Приклад.
Іноді застосовуються деякі нестандартні прийоми.
Приклад.
Отже
Інтегрування деяких ірраціональних функцій.
Далеко не кожна ірраціональна функція може мати інтеграл, виражений елементарними функціями. Для знаходження інтеграла від ірраціональної функції слід застосувати підстановку, що дозволить перетворити функцію в раціональну, інтеграл від якої може бути знайдений як відомо завжди.
Розглянемо деякі прийоми для інтегрування різних типів ірраціональних функцій.
Інтеграл виду де n – натуральне число.
За
допомогою підстановки
функція раціоналізується.
Тоді
Приклад.
Якщо до складу ірраціональної функції входять коріння різних ступенів, то в якості нової змінної раціонально взяти корінь ступеня, рівного найменшому спільному кратному ступенів корінь, що входять у вираз.
Проілюструємо це на прикладі.
Приклад.
Інтегрування біноміальних диференціалів.
Визначення: Біноміальним диференціалом називається вираз
xm(a + bxn)pdx
де m, n, і p – раціональні числа.
Як було доведено академіком Чебишевим П.Л. (1821–1894), інтеграл від біноміального диференціала може бути виражений через елементарні функції тільки в наступних трьох випадках:
-
Якщо р – ціле число, то інтеграл раціоналізується за допомогою підстановки
,
де
– спільний знаменник m
і n.
-
Якщо
– ціле число, то інтеграл раціоналізується підстановкою
, де s – знаменник числа р.
3)
Якщо
– ціле число, то використовується
підстановка
,
де s
– знаменник числа р.
Однак, найбільше практичне значення мають інтеграли від функцій, раціональних щодо аргументу й квадратного кореня із квадратного тричлена.
На розгляді цих інтегралів зупинимося більш докладно.