
- •24,25. Дезаминирование аминокислот, его типы
- •Окислительное дезаминирование аминокислот оксидазами l- и d-аминокислот.
- •29.Метаболизм аммиака: пути образования и детоксикации.
- •Цикл мочевины
- •31Расщепление нуклеиновых кислот в желудочно-кишечном тракте. Роль нуклеаз.
- •33.Катаболизм пиримидиновых нуклеотидов.
- •34.Репликация : характеристика реплицирующего аппарата клетки.
- •35.Репликация днк : механизмы синтеза полинуклеотидной цепи (ведущей и запаздывающей).
- •36.Репарация днк.
- •38.Биосинтез рнк : строение промоторов, взаимодействие рнк-полимеразы с промоторами.
- •39.Характеристика рнк-полимераз у про- и эукариот.
- •40.Этапы биосинтеза рнк : инициация, элонгация, терминация. Инициация транскрипции
- •Элонгация транскрипции
- •Терминация транскрипции
- •41.Компоненты белоксинтезирующей системы у прокариот: мРнк, рРнк, тРнк; белковые факторы инициации, элонгации и терминации; 70s рибосомы.
- •Белоксинтезирующая система клетки
- •42.Компоненты белоксинтезирующей системы у эукариот (мРнк, рРнк, тРнк;мяРнк, белковые факторы инициации, элонгации и терминации; 80s рибосомы).
- •Белоксинтезирующая система клетки
- •43.Строение рибосом, характеристика функциональных центров.
- •44.Биосинтез белка: активация аминокислот. Характеристика аминоацил-тРнк-синтетаз.
- •Роль тРнк в трансляции
- •Аминоацил-тРнк-синтетазы
- •Инициация трансляции в прокариотических клетках.
- •Элонгация и терминация трансляции у прокариот.
- •Генетический код. Основные характеристики.
- •Сворачивание (фолдинг) полипептидной цепи. Роль ферментов и шаперонов в этом процессе.
- •Посттрансляционные модификации белков
44.Биосинтез белка: активация аминокислот. Характеристика аминоацил-тРнк-синтетаз.
Трансляция (синтез белка) ‒ это процесс декодирования мРНК, в результате которого информация с «языка» последовательности нуклеотидов в мРНК «переводится» (транслируется) на «язык» последовательности аминокислот в полипептидной молекуле. Декодирование мРНК в процессе репликации и транскрипции осуществляется направлении 5ʹ→3ʹ.
Синтез белка протекает в несколько стадий: 1) активация аминокислот; 2) аминоацилирование тРНК; 3) собственно трансляция; 4) посттрансляционная модификация полипептидной цепи.
Для биосинтеза белка необходима информация о структуре синтезируемого белка (она заложена в нуклеотидной последовательности мРНК), рибосомы, транспортных РНК, 20 аминокислот, специфические ферменты аминоацил-тРНК-синтетазы, осуществляющие активацию аминокислот и присоединение их к тРНК, белковые факторы трансляции, АТР и GTP, ионы Mg2+.
Система активации и транспорта аминокислот в рибосомы
В клетке аминокислоты, как правило, не существуют в свободном виде. Они взаимодействуют с тРНК и сохраняются в виде аминоацил-тРНК (аа-тРНК). Биологический смысл такой мобилизации тРНК заключен в том, что аминокислоты при этом предохраняются от действия катаболических ферментов и не сгорают в клетке, а используются для синтеза белка. Лишь при избытке какой-нибудь из аминокислот часть ее остается не связанной с тРНК и через реакции переаминирования вовлекается в цикл лимонной кислоты для энергетического обмена.
Аминокислота присоединяется ковалентной аминоацильной связью между СООН-группой АК и гидроксильной группой 3′-углеродного атома рибозы к 3′-концевому аденозину ССА-триплета тРНК. Аминоацильная связь является макроэргической, поэтому ее образование можно рассматривать как активирование аминокислоты. В последующем энергия этой связи используется для образования пептидной связи.
Процесс образования аа-тРНК складывается из двух реакций. Первая представляет собой взаимодействие аминокислоты с АТР. В результате этой реакции, катализируемой аа-тРНК-синтетазой и обозначаемой как реакция первичной активации карбоксила (реакция активирования аминокислоты), образуются аминоациладенилат и пирофосфат:
Аа-тРНК-синтетаза, Mg2+
1. АК + АТР → АК ~ АМР + Н4Р2О7
Аминоациладенилат остается связанным с аа-тРНК в виде нековалентного комплекса до тех пор, пока не произойдет вторая реакция: акцептирование активированного аминокислотного остатка, или перенос его на концевую группу тРНК. Эта реакция также катализируется аа-тРНК-синтетазой:
Аа-тРНК-синтетаза
2. АК~ АМР + тРНК → АК~ тРНК + АМР
Мg2
В результате этой реакции карбоксильная группа АК переносится на 3′-ОН группу рибозы концевого аденозина тРНК и образуется конечный продукт – аа-тРНК, а сама аа-тРНК-синтетаза и АМР высвобождаются.
Таким образом, аа-тРНК-синтетазы выполняют исключительно важную роль в реализации генетической информации. С помощью этих ферментов осуществляется специфический отбор аминокислот и «зашифровка», которая заключается в присоединении каждой аминокислоты к специальному адаптеру, способному узнавать кодон для нее на мРНК. Именно на уровне аа-тРНК-синтетаз происходит специфическая подготовка к переводу 4-буквенного генетического кода в 20-буквенный код белков. Ферментативное аминоацилирование тРНК, несомненно, выполняет кодирующую функцию.