Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_elektrotehnike.docx
Скачиваний:
22
Добавлен:
20.12.2018
Размер:
2.94 Mб
Скачать
  1. Принцип работы машины постоянного тока

Для понимания сущности работы электрической машины необходимо вспомнить физические законы, которыми описываются основные электромагнитные явления: закон электромагнитной индукции, закон Био —Савара, закон Ампера. Эти законы вместе с законами Кирхгофа и Ома позволяют описать основные процессы, происходящие в электрических машинах.

Работа любой электрической машины (генератора или двигателя постоянного и переменного тока) характеризуется взаимодействием двух направленных навстречу друг другу вращающих моментов, один из которых создается механическими, а другой — электромагнитными силами. Кроме того, работа двигателя и генератора характеризуется взаимодействием напряжения сети и ЭДС, возникающей в обмотке якоря.

Машина работает в режиме генератора, если ее вращает первичный двигатель, главное магнитное поле возбуждено. Вследствие этого вращения изменяется магнитный поток, пронизывающий витки обмотки якоря. Цепь якоря соединена через щетки с приемником. При таких условиях ЭДС, индуцируемая в обмотке якоря, создает в якоре и приемнике ток.

  1. Обратимость электрических машин вызвана одинаковым устройством преобразователей электрической энергии в механическую и механической в электрическую. Таким образом, электрические машины взаимозаменяемы: любой электродвигатель может использоваться в качестве генератора и наоборот, электродинамическая головка может использоваться в качестве микрофона и наоборот, и т. п.

Приоритетная функция электрической машины определяет её конструктивные особенности, вследствие которых обратимость становится неравномерной. Так, электрогенератор будет иметь несколько больший КПД, чем используемый в качестве генератора соответствующий по размерам электродвигатель, электродинамический микрофон будет выдавать более качественный звуковой сигнал, чем равная по размерам динамическая головка.

  1. Генераторы постоянного тока.

Генераторы постоянного тока являются источниками постоянного тока, в которых осуществляется преобразование механической энергии в электрическую. Якорь генератора приводится во вращение каким-либо двигателем, в качестве которого могут быть использованы электрические двигатели внутреннего сгорания и т.д. Генераторы постоянного тока находят применение в тех отраслях промышленности, где по условиям производства необходим или является предпочтительным постоянный ток (на предприятиях металлургической и электролизной промышленности, на транспорте, на судах и др.). Используются они и на электростанциях в качестве возбудителей синхронных генераторов и источников постоянного тока.

Рабочие свойства электрических машин определяются их характеристиками. Для генераторов постоянного тока основными являются характеристика холостого хода; нагрузочная, внешняя и регулировочная характеристики.

Все указанные характеристики определяются при постоянной номинальной частоте вращения якоря. Они могут быть получены как экспериментальным, так и расчетным путем.

Рис. 9.12. Схема включения генератора независимого возбуждения

Генератор постоянного тока. В генераторе энергия механического движения преобразуется в электрическую энергию. Двигатель, в качестве которого обычно используют турбину, или двигатель внутреннего сгорания, вращает якорь в магнитном поле возбуждения. Вследствие этого вращения изменяется магнитный по- ток, пронизывающий витки обмотки якоря. При этом индуцируется ЭДС, пропорциональная скорости изменения магнитного потока.

  1. Двигатель постоянного тока — электрическая машина, машина постоянного тока, преобразующая электрическую энергию постоянного тока в механическую энергию.

У двигателя параллельного возбуждения цепь об- мотки возбуждения, так же как и цепь обмотки якоря, включена под постоянное напряжение сети. Цепь об- мотки возбуждения можно питать и от отдельного источника постоянного тока (независимое возбуждение). И в том и в другом случае ток возбуждения не зависит от тока якоря.

Схема включения в сеть двигателя постоянного тока параллельного возбуждения изображена на рис. Обмотка якоря включается в сеть через ступенчатый пусковой реостат Rn, обмотка возбуждения — через реостат Ru. Токопроводящая ручка пускового реостата соединена с зажимом Л и до запуска двигателя находится на контакте О. При запуске она последовательно перемещается в крайнее левое положение.

При этом цепь возбуждения непосредственно подсоединена к сети через дугообразный контакт Ш, а цепь якоря Я через секции пускового реостата. В процессе пуска число включенных секций уменьшается, а по окончании пуска пусковой реостат полностью выводится. Такая конструкция пускового реостата исключает разрыв цепи якоря при переключении ручки с одного контакта на другой. Следует иметь в виду, что пусковой реостат не рассчитан на длительное пребывание под током якоря, поэтому при работе двигателя его ручка должна находиться в крайнем левом положении.

Вращающий момент М двигателя определяется на основании закона Ампера известной из механики формулы^

M = F N = Bcp N.