
Альсиферы
Альсиферы — это тройные сплавы, состоящие из алюминия, кремния и железа (Al—Si—Fe), образующие твердые растворы. Высокую магнитную проницаемость альсиферы имеют в очень узком концентрационном интервале содержания в сплаве А1 и Si. Сплав оптимального состава содержит: Si 9,6%, Al 54%, остальное Fe.
Магнитные свойства альсифера с оптимальным составом приведены в табл. 15.1, из которой видно, что они не уступают магнитным свойствам пермаллоев. Магнитная анизотрония и константа магнитострикции у альсиферов близки к нулю. Однако максимум магнитных свойств соответствует очень точному соблюдению состава, что можно обеспечить только для лабораторных образцов. Промышленные образцы имеют более низкие значения магнитных свойств, чем альсифер оптимального состава (у отожженных образцов μн = 6000—7000). Альсиферы отличаются высокой твердостью и большой хрупкостью, вследствие чего толщина изделий из альсифера (например, магнитные экраны) должна быть не менее 2—3 мм. Из-за низкого удельного сопротивления изделия из этого материала не используют в цепях переменного тока даже при частоте 50 Гц. Альсиферы хорошо размалываются в порошок, который, как карбонильное железо, используется в качестве ферромагнитной фазы в матнитодиэлектриках.
Магнитодиэлектрики
Магнитодиэлектрики — это фактически высокочастотные магнитные пластмассы, в которых наполнителем является ферромагнетик, а связующим — электроизоляционный материал органический (например, фенолоформальдегидная смола, полистирол) или неорганический (например, жидкое стекло).
В магнитодиэлектриках частицы ферромагнетика разделены друг от друга сплошной пленкой из электроизоляционного материала, образующего непрерывную фазу-матрицу с высоким электрическим сопротивлением, являющуюся одновременно механическим связующим. Благодаря тому что частицы ферромагнетика (их размер d ≈ 10─4—10─6м) электроизолированы друг от друга, потери на вихревые токи и на гестерезис малы. Поэтому основным видом потерь становятся потери на магнитное последействие, которые превышают остальные виды потерь в 10—30 раз. Суммарная мощность потерь Р складывается из потерь на гистерезис Рг, вихревые токи Рвт, магнитное последействие Рп и диэлектрические потери в электроизоляционном материале Рд:
Р = Рг + Рвт + Рп + Ра. (15.2)
Общий (суммарный) тангенс угла потерь магнитодиэлектрика можно выразить через его сопротивление потерь r1, следующей формулой:
Tgδ = r1/ωL = 1/Q
где r1, — активное сопротивление, эквивалентное всем видам магнитных потерь, потерям в обмотке и в электрической изоляции; ω — частота; L и Q — индуктивность и добротность катушки, соответственно. Величина мощности потерь в магнитодиэлектриках зависит в значительной мере от размера частиц ферромагнетика и характера изоляции.
Магнитная проницаемость магнитодиэлектрика μмд всегда меньше μ ферромагнетика, составляющего его основу, и вычисляется по формуле μмд =1/(1/μ + V/3) (15.3)
где μ— магнитная проницаемость исходного ферромагнетика; V — относительный объем, занимаемый электроизоляционным материалом.
Магнитная проницаемость магнитодиэлектриков имеет невысокое значение (см. табл. 15.1) и мало зависит от частоты. Преимущество магнитодиэлектриков перед ферритами заключается в том, что они обладают более высокой стабильностью магнитных свойств и изделия из них получают более высоких классов геометрической точности и степени шероховатости поверхности. Однако по ряду электромагнитных параметров магнитодиэлектрики уступают ферритам, поэтому применение их постепенно сокращается.
Наиболее широко применяются магнитодиэлектрики на основе карбонильного железа, альсифера и молибденового пермаллоя, имеющих рабочую частоту соответственно не более примерно 100, 0,1 и 0,7 МГц. Для придания молибденовому пермаллою хрупкости и возможности получать из него порошки, в него в процессе выплавки вводят небольшое количество серы.