Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
76
Добавлен:
04.03.2014
Размер:
195.58 Кб
Скачать

13.4.2. Пленочные резистивные материалы

Из пленочных резистивных материалов изготавливают пленочныe резисторы различных типов. Резистивные пленки получают методом вакуумных технологий из чистых металлов, их сплавов, оксидов, силицидов, карбидов некоторых металлов и их смесей, а также из углеродистых материалов.

Тонкие резистивные металлические пленки получают из тугоплавких металлов (тантала Та, рения Re, хрома Сг) и таких сплавов как нихромы, сплавы марки PC (содержат Si, Cr, Ni, Fe), сплавы марки МЛТ (многокомпонентные сплавы, содержащие Si, Fe, Cr Ni, Al, W, а некоторые из них и лантаноиды), а также композицион­ных материалов (механические смеси мелкодисперсных порошков металлов, их оксидов, карбида кремния с органической или неорга­нической связкой). Используют также металлооксидные резистив­ные пленки (например, из двуокиси олова) и на основе различных модификаций углерода (природного графита, сажи, пиролитического углерода) и боруглерода.

Все типы пленочных резистивных материалов, за исключением углеродистых, непрерывно совершенствуют, ассортимент их посто­янно расширяется.

Влияние примеси на удельное сопротивление

Чистые отожженные металлы имеют менее деформированную кристаллическую решетку, поэтому для них характерны большие значения λ, и, следовательно, у (малая величина ρ). Примеси, раство­ренные в металлах, деформируют кристаллическую решетку и вызы­вают большие изменения удельного сопротивления. Отсюда ρ метал­лов, содержащих растворенную примесь, всегда выше, чем ρ чистых

Рис. 12.4. Удельное сопротивление ρ

меди в зависимости от концентрации N

Удельное сопротивление металлических сплавов

Рис. 12.5. Типичная зависимость удель­ного сопротивления ρ металлических проводников от температуры Т в широ­ком интервале (пояснение см. в тексте) металлов.

При малых концентрациях (в долях процента) растворен­ной примеси удельное сопротивление металлов в зависимости от концентрации примеси увеличивается практически линейно. На рис. 12.4 приведена зависимость р меди от концентрации в долях процента различных химических элементов. Аналогичные зависимо­сти наблюдаются и у других металлов (см. рис. 13.2 и 13.7). При больших концентрациях растворенной примеси удельное сопротив­ление металлов изменяется линейно или нелинейно. Это зависит от соотношения физико-химических параметров металла и растворен­ной примеси.У металлических сплавов удельное сопротивление зависит не только от концентрации компонентов, образующих данный сплав, но и от типа образовавшегося сплава. В зависимости от физико-химического взаимодействия компонентов друг с другом (от соотно­шения размеров их атомов и электрохимических констант) могут образовываться следующие основные типы сплавов: гетерогенные структуры (механические смеси), твердые растворы с неограниченной или ограниченной растворимостью компонентов друг в друге в твердом состоянии, химические (интерметаллические) соединения.

Рассмотрим диаграммы состояния каждого из перечисленных типов сплавов и характер зависимости удельного сопротивления и механических свойств от состава сплавов.

В электро- и радиотехнике большой интерес представляют

сплавы, образующие твердые растворы; их широко применяют в производстве проволочных резисторов, реостатов, термопар и др.

При образовании сплава твердый раствор постоянная кристалличе- ской решетки металла-растворителя изменяется, атомы компонентов распределяются по ее узлам беспорядочно. В результате кристаллическая решетка существенно деформируется, что приводит к сильному рассеянию электронов проводимости и увеличению удельного сопротивления. Чем больше разница в значениях валент­ности металла-растворителя и растворенного металла и в размерах их атомов, тем больше увеличивается удельное сопротивление. Зависимость ρ от состава сплавов, образующих твердые растворы проходит через максимум (см. рис. 10.9, б). Максимальное значение р проявляется у сплавов, кристаллическая решетка которых макси­мально деформирована. При этом могут наблюдаться два типа мак­симума. Если сплавляемые металлы, образующие твердые раство­ры, принадлежат к одной группе периодической системы элементов Д.И. Менделеева, то зависимость р от состава сплавов обычно име­ет примерно симметричный максимум. Если оба сплавляемых ме­талла принадлежат к разным группам периодической системы элементов, то максимум зависимости р от состава имеет несиммет­ричную форму и сдвинут от середины диаграммы в сторону метал­ла, удельное сопротивление которого при комнатной температуре больше.

Влияние деформации на удельное сопротивление

Большое влияние на удельное сопротивление и механические свойства оказывают дефекты кристаллической решетки, возникшие при холодной обработке металлов давлением (ОМД). В результате пластической деформации, вызванной холодной ОМД, зерна (и блоки в них) удлиняются и измельчаются, возрастает деформация кристал­лической решетки и увеличиваются в ней дефекты: возрастает плот­ность дислокаций и концентрация вакансий, что приводит к улучше­нию механических свойств — увеличивается твердость и предел прочности на разрыв. Однако удельное сопротивление при этом также увеличивается. При рекристаллизационном отжиге металлов, подвергнутых холодной ОМД, зерна (и блоки в них) будут округляться и укрупняться, кристаллическая решетка выпрямляться, а концентрация дефектов в ней будет уменьшаться. Удельное сопротивление при этом может понизиться до первона­чального значения. Одновременно понизится твердость и предел прочности на разрыв.

При упругой деформации удельное сопротивление металлов может как увеличиться, так и уменьшиться. При упругой деформации, вы­званной растяжением, амплитуды тепловых колебаний узлов кри­сталлической решетки увеличатся, в результате уменьшится λ, и воз­растет ρ. При упругой деформации, вызванной сжатием, амплитуды тепловых колебаний узлов кристаллической решетки, наоборот, уменьшатся, в результате λ возрастет, а ρ снизится.

Влияние размеров проводника на удельное сопротивления

В металлических проводниках в виде тонких пленок, фольги или проволоки образуется мелкозернистая структура. Чем мельче зерно, тем больше суммарная удельная поверхность зерен. Наиболее де­фектной частью зерна является его поверхность. С уменьшением размера зерна увеличивается дефектность структуры металла и, сле­довательно, возрастает его удельное сопротивление р. Для тонких пленок, полученных методом термического напыления в вакууме или химического осаждения, увеличение р наблюдается при умень­шении толщины δ, начиная примерно с δ = 0,1—0,01 мкм. Увеличе­ние удельного сопротивления объясняется тем, что при кристаллиза­ции металла на подложке в образовавшейся мелкозернистой пленке появляются многочисленные дефекты в виде вакансий, дислокаций, межблочных и межзеренных границ, пор и др. В результате умень­шается средняя длина свободного пробега электрона λ, и р возраста­ет. При дальнейшем уменьшении толщины δ пленки удельное со­противление δ продолжает расти (рис. 12.6, а).

Для сравнительной оценки удельного сопротивления тонких ме­таллических пленок принято сопротивление квадрата RD, через про­тивоположные грани которого ток протекает параллельно поверх­ности

RD = ρδ /δ, (12.9)

где ρδ — удельное (объемное) сопротивление пленки толщиной δ.

Температурный коэффициент удельного сопротивления тонких металлических пленок ТКρδ может быть как положительным, так и отрицательным (см. рис. 12.6, б). При увеличении толщины пленки αρδ (ТК ρδ) стремится к значению αρ (ТКр) данного материала в тол­стых слоях.

Рис. 12.6. Зависимость удельного сопротивления ρδ (а) и темпе­ратурного коэффициента удельного сопротивления αρδ (б) ме­таллической пленки от ее толщины δ

Соседние файлы в папке Ответы на экзамен 2