
- •Часть 1 Механика. Электричество. Магнетизм.
- •1. Вводные сведения
- •1.1. Предсказание будущего - задача науки
- •1.2. Предмет физики
- •1.3. Физическая модель
- •1.4. Язык физики?
- •1.5. Экспериментальная и теоретическая физика
- •Физические основы механики
- •3. Элементы кинематики
- •3.1.3. Абсолютно твердое тело
- •3.2. Тело отсчета
- •3.3. Система отсчета
- •3.8.1. Скорость направлена по касательной к траектории
- •3.8.2. Компоненты скорости
- •3.9. Вычисление пройденного пути
- •3.10.1. Нормальное и тангенциальное ускорение
- •4. Динамика материальной точки
- •4.6.1. Система си (System international)
- •4.6.1.1. Размерность силы
- •4.7. Третий закон Ньютона
- •5. Законы сохранения
- •5.1. Механическая система - это совокупность тел, выделенных нами для рассмотрения 5.1.1. Внутренние и внешние силы
- •5.2. Закон сохранения импульса
- •5.6.1. Консервативность силы тяжести
- •5.6.2. Неконсервативность силы трения
- •5.7. Потенциальная энергия может быть введена только для поля консервативных сил
- •5.8.Закон сохранения механической энергии
- •6. Кинематика вращательного движения
- •6.1. Поступательное и вращательное движение
- •6.2. Псевдовектор бесконечно малого поворота
- •7. Динамика вращательного движения
- •8. Элементы специальной теории относительности
- •8.2. Принцип относительности Галилея:
- •8.3. Неудовлетворительность механики Ньютона при больших скоростях
- •8.4. Постулаты с.Т.О.
- •Принцип постоянства скорости света:
- •8.5.1. Вывод преобразований Лоренца
- •Электричество
- •9. Постоянное электрическое поле
- •9.3. Электрическое поле
- •9.3.6. Принцип суперпозиции электрических полей
- •9.3.7. Напряженность поля точечного заряда
- •9.3.8. Линии напряженности
- •9.4.2.2. Заряд в произвольном месте внутри сферы
- •9.4.2.4. Поток вектора е поля системы зарядов, находящихся внутри замкнутой поверхности
- •9.4.2.5. Поток вектора е для поля, созданного зарядами, находящимися вне замкнутой поверхности
- •9.4.3. Формулировка теоремы Гаусса
- •9.4.4.1. Поле равномерно заряженной бесконечной плоскости
- •9.9. Проводник в электрическом поле
- •9.10. Электроемкость уединенного проводника
- •9.11. Электроемкость конденсатора
- •9.12. Энергия электрического поля
- •9.12.1. Плотность энергии электрического поля в вакууме
- •9.13. Электрическое поле в диэлектрике
- •9.13.1. Диэлектрик?
- •9.13.1.1. Два типа диэлектриков - полярные и неполярные
- •9.13.2. Поляризованность диэлектрика (вектор поляризации) - это дипольный момент единицы объема:
- •9.13.4.1. Плотность энергии электрического поля в диэлектрике
- •10. Постоянный электрический ток
- •10.1. Сила тока
- •10.2. Плотность тока
- •10.2.1. Связь плотности тока и скорости упорядоченного движения зарядов
- •10.4. Закон Ома для участка цепи
- •10.5. Закон Ома в дифференциальной форме
- •10.6. Закон Джоуля-Ленца в дифференциальной форме
- •Магнетизм. Уравнения Максвелла
- •11. Магнитное поле в вакууме
- •11.2. Проводник с током создает только магнитное поле, другой проводник с током реагирует только на магнитное поле
- •11.3. Рамка с током как регистратор магнитного поля. Вектор магнитной индукции
- •11.5.6. Магнитное поле тороида
- •11.6. Закон Ампера
- •11.7. Сила Лоренца - это сила, действующая со стороны магнитного поля на движущийся в нем заряд
- •11.7.1. Движение заряженной частицы в однородном магнитном поле
- •11.11.1. Потокосцепление
- •11.11.2. Индуктивность соленоида
- •11.11.3. Энергия магнитного поля
- •12. Магнитное поле в веществе
- •12.2. Классификация магнетиков
- •13. Уравнения Максвелла
- •13.1. Первая пара уравнений Максвелла в интегральной форме
- •13.1.1. Первое уравнение первой пары - это закон Фарадея-Ленца
- •13.1.2. Второе уравнение первой пары - нет магнитных зарядов
- •13.2. Вторая пара уравнений Максвелла в интегральной форме
- •13.3. Система уравнений Максвелла в интегральной форме
- •13.4. Система уравнений Максвелла в дифференциальной форме
- •Литература,
13. Уравнения Максвелла
Уравнения Максвелла выражают связи между характеристиками электромагнитного поля:
- (9.3.3) , (11.10.2.1);
-
(11.3);
-
(9.13.4);
-
(12.5).
Сформулированы уравнения в 1861-1865 гг. Дж. К. Максвеллом на основе обобщения эмпирических законов электрических и магнитных явлений. Развивая идеи М. Фарадея, Максвелл впервые ввел точный термин "электромагнитное поле".
13.1. Первая пара уравнений Максвелла в интегральной форме
13.1.1. Первое уравнение первой пары - это закон Фарадея-Ленца
|
|
S - произвольная поверхность, "натянутая" на контур l. Это уравнение - обобщенная формулировка закона электромагнитной индукции (11.10). В самом деле:
значит
в (13.1.1) справа стоит -
|
Левую часть
уравнения,
,
домножим и поделим на q - заряд пробной
частицы, помещенной в электрическое
поле :
Мы получили закон Фарадея-Ленца (11.10.1) :
13.1.2. Второе уравнение первой пары - нет магнитных зарядов
|
|
Поток
вектора
|
13.2. Вторая пара уравнений Максвелла в интегральной форме
13.2.1. Первое уравнение второй пары - это теорема о циркуляции + что-то еще.
Для вектора
теорема
о циркуляции (11.5.4) гласит:
|
|
|
(11.5.4) |
В вакууме:
.
Тогда
|
или |
|
При непрерывном распределении тока через поверхность S
,
здесь j - плотность тока (10.2). Тогда имеем
.
Интеграл слева
берется по произвольному воображаемому
контуру, интеграл справа - по произвольной
поверхности, "натянутой" на этот
контур.
В веществе теорема о циркуляции
для вектора
имеет
тот же вид:
,
но при этом в интеграле справа не учитываются микроскопические токи вещества, приводящие к изменению магнитной индукции в веществе (12).
13.2.1.1. + что-то еще - это "ток смещения"
Применим теорему
о циркуляции вектора
к
магнитному полю, созданному переменным
электрическим током, перезаряжающим
конденсатор.
,
.
См. (9.4.4.1) , (10.1), (10.2).
На S2
j = 0, но
,
а по величине
,
значит ?
.
Величину
Максвелл
назвал "током
смещения".
Как видно, "ток смещения" - это переменное во времени электрическое поле. Первое уравнение второй пары утверждает, что магнитное поле создается током проводимости и переменным электрическим полем ("током смещения").
13.2.2. Второе
уравнение второй пары
- это теорема Гаусса для вектора
(9.13.4)
,
где qi - свободные, не связанные заряды.
При непрерывном распределении заряда
.
13.3. Система уравнений Максвелла в интегральной форме
Первая пара (13.1)
|
|
|
|
|
|
Вторая пара (13.2)
|
|
|
|
|
|