Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика_11.docx
Скачиваний:
14
Добавлен:
18.12.2018
Размер:
475.93 Кб
Скачать

16.Магнитное поле движущегося заряда

Любой проводник с током создает в окружающем пространстве магнитное поле. При этом электрический же ток является упорядоченным движением электрических зарядов. Значит можно считать, что любой движущийся в вакууме или среде заряд попрождает вокруг себя магнитное поле. В результате обобщения многочисленных опытных данных был установлен закон, который определяет поле В точечного заряда Q, движущегося с постоянной нерелятивистской скоростью v. Этот закон задается формулой   (1)  где r — радиус-вектор, который проведен от заряда Q к точке наблюдения М (рис. 1). Согласно (1), вектор В направлен перпендикулярно плоскости, в которой находятся векторы v и r : его направление совпадает с направлением поступательного движения правого винта при его вращении от v к r

Модуль вектора магнитной индукции (1) находится по формуле   (2)  где α — угол между векторами v и r.  Сопоставляя закон Био-Савара-Лапласа и (1), мы видим, что движущийся заряд по своим магнитным свойствам эквивалентен элементу тока:    Приведенные законы (1) и (2) выполняются лишь при малых скоростях (v<<с) движущихся зарядов, когда электрическое поле движущегося с постоянной скорость заряда можно считать электростатическим, т. е. создаваемым неподвижным зарядом, который находится в той точке, где в данный момент времени находится движущийся заряд.  Формула (1) задает магнитную индукцию положительного заряда, движущегося со скоростью v. При движении отрицательнго заряда Q заменяется на -Q. Скорость v - относительная скорость, т. е. скорость относительно системы отсчета наблюдателя. Вектор В в данной системе отсчета зависит как от времени, так и от расположения наблюдателя. Поэтому следует отметить относительный характер магнитного поля движущегося заряда.  Первый, кто обнаружил поле движущегося заряда, был американский физик Г. Роуланду (1848—1901). Окончательно этот факт был установлен профессором Московского университета А. А. Эйхенвальдом (1863—1944), который изучал магнитное поле конвекционного тока и магнитное поле связанных зарядов поляризованного диэлектрика. Магнитное поле движущихся с постоянной скоростьб зарядов было измерено академиком А. Ф. Иоффе, который также доказал эквивалентность, в смысле возбуждения магнитного поля, электронного пучка и тока проводимости. 

Сила Лоренца

Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Силу, действующую со стороны магнитного поля на движущиеся в нем заряды, называют силой Лоренца.

Сила Лоренца определяется соотношением:

Fл = q·V·B·sin

где q - величина движущегося заряда; V - модуль его скорости;  B - модуль вектора индукции магнитного поля;  - угол между вектором скорости заряда и вектором магнитной индукции.

Обратите внимание, что сила Лоренца перпендикулярна скорости и поэтому она не совершает работы, не изменяет модуль скорости заряда и его кинетической энергии. Но направление скорости изменяется непрерывно

Сила Лоренца зависит от модулей скорости частицы и индукции магнитного поля. Эта сила перпендикулярна скорости и, следовательно, определяет центростремительное ускорение частицы. Частица равномерно движется по окружности радиуса r.

17.МАГНИ́ТНАЯ ВОСПРИИ́МЧИВОСТЬ, безразмерная величина c, характеризующая способность данного вещества намагничиваться в магнитном поле. Магнитная восприимчивость численно равна намагниченности при единичной напряженности поля. Объемная магнитная восприимчивость c равна отношению намагниченности единицы объема вещества J к напряженности Н намагничивающего магнитного поля:  c= J /H.  Кроме объемной магнитной восприимчивости c иногда используют понятия удельной и молярной магнитных восприимчивостей, которые относят, соответственно, к единице массы или к молю  вещества. Магнитная восприимчивость, рассчитанная на 1 кг (или 1 г) вещества, называется удельной, а магнитная восприимчивость одного моля — молярной

магни́тная проница́емость

вещества или среды (обозначается µ), характеризует связь между магнитной индукцией В и напряжённостью магнитного поля Н в веществе (среде); µ = В/Н (в единицах СГС) или µ = В/(µ0Н) (в единицах СИ), где µ0 — магнитная постоянная. Магнитная проницаемость связана с магнитной восприимчивостью κ соотношением µ = 1 + 4πκ (в единицах СГС) или µ = 1 + κ (в единицах СИ).

Намагничивание, процессы,

протекающие в ферромагнетике при действии на него внешним магнитным полем и приводящие к возрастанию намагниченности ферромагнетика в направлении поля. В состоянии полного размагничивания ферромагнитный образец состоит из небольших областей (доменов, объёмом 10-9-10-6 см3, иногда до 10-3см3), каждая из которых намагничена до насыщения Js, но при этом векторы самопроизвольной намагниченности доменов Js располагаются так, что суммарный магнитный момент образца J = 0. Намагничивание состоит в переориентации векторов намагниченности доменов в направлении приложенного поля; включает процессы смещения, вращения и парапроцесс.

Напряжённость магни́тного по́ля — (стандартное обозначение Н) этовекторная физическая величина, равная разности вектора магнитной индукции B и вектора намагниченности M.

В СИ: , где μ0 - магнитная постоянная

В СГС: 

  • В простейшем случае изотропной (по магнитным свойствам) среды и в приближении достаточно низких частот изменения поля B и Hпросто пропорциональны друг другу, отличаясь просто числовым множителем (зависящим от среды) B = μ H в системе СГС или B = μ0μ H в системе СИ (см. Магнитная проницаемость, также см. Магнитная восприимчивость).

В системе  СИ — вамперах на метр (А/м). В технике Эрстед постепенно вытесняется единицей СИ — ампером на метр, 1 Э = 1000/(4π) А/м = 79,5775 А/м.

18.Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля

Гистере́зис (греч. ὑστέρησις — «отстающий») — свойство систем (физических, биологических и т.д.), мгновенный отклик которых на приложенные к ним воздействия зависит в том числе и от их текущего состояния, а поведение системы на интервале времени во многом определяется её предысторией. Для гистерезиса характерно явление "насыщения", а также неодинаковость траекторий между крайними состояниями (отсюда наличие остроугольной петли на графиках). Не следует путать это понятие синерционностью поведения систем, которое обозначает монотонное сопротивление системы изменению её состояния.

Точкой (температурой) Кюри называется точка (температура) на кривой фазовых переходов 2-го рода, связанных с возникновением (разрушением) упорядоченного состояния в твердых телах при изменении температуры, но при заданных значениях других термодинамических параметрах (давлении, магнитного поля, электрического поля и т. д.). Переход характеризуется изменением состояния вещества приближением к точке фазового перехода и приобретением веществом качественно нового свойства в этой точке. Название этой точки дано в честь П. Кюри, впервые (1895) и подробно изучившего этот переход у ферромагнетиков. Так, при температуре Т ниже точки Кюри (Тс) ферромагнетики обладают самопроизвольной (спонтанной) намагниченностью (Js) и определенной магнитно-кристаллической симметрией. При нагреве ферромагнетика и приближении к точке Кюри усиливающееся тепловое движение атомов “расшатывает” существующий магнитный порядок - одинаковую ориентацию магнитных моментов атомов и ферромагнетик теряет самопроизвольную намагниченность.

Температура Кюри, например, для железа равна 1043 К, кобальта 13394 К, никеля 631 К.

По величине точку Кюри можно определить энергию обменного взаимодействия магнитных материалов. При их нагревании вследствие увеличения хаотического теплового движения атомов параллельная ориентация спиновых магнитных моментов электронов нарушается, самопроизвольная намагниченность уменьшается. При достижении точки Кюри самопроизвольная намагниченность ферромагнетиков исчезает, т.е. энергия хаотического теплового движения атомов достигает величины обменной энергии:

Wобм = kTQ,

где k - постоянная Больцмана.

Таким образом, точка Кюри является одним из важнейших параметров оценки рабочего интервала температур, в котором может быть использован данный магнитный материал. В таблице 1 приведены значения намагниченности Js насыщения, магнитной индукции Bs насыщения и точки Кюри некоторых магнитных материалов.

Ферромагнетики — вещества (как правило, в твёрдом кристаллическом или аморфном состоянии), в которых ниже определённой критической температуры (точки Кюри) устанавливается дальний ферромагнитный порядок магнитных моментов атомов или ионов (в неметаллических кристаллах) или моментов коллективизированных электронов (в металлических кристаллах). Иными словами, ферромагнетик — такое вещество, которое, при температуре ниже точки Кюри, способно обладать намагниченностью в отсутствие внешнего магнитного поля. Последние исследования в области физики показали, что некоторые ферромагнетики, при создании определенных условий, могут приобретать парамагнетические свойства при температурах, которые существенно выше точки Кюри. Поэтому ферромагнетики, наряду со многими другими магнетическими веществами, остаются, как оказалось, плохо изученными веществами до сих пор.