
- •Механизмы цветовосприятия
- •Основные взаимно-дополнительные пары:
- •[Править] Описание
- •Единицы и шкала измерения температуры
- •[Править] Шкала температур Кельвина
- •[Править] Шкала Цельсия
- •[Править] Шкала Фаренгейта
- •Переходы из разных шкал
- •[Править] Сравнение температурных шкал
- •Абсолютная и относительная влажность
- •Формулы
- •Проводящая система сердца
- •Из чего состоит проводящая система сердца?
- •[Править] Электрическое поле диполя
- •[Править] Действие поля на диполь
- •[Править] Единицы измерения электрического дипольного момента
- •[Править] Поляризация
- •[Править] Дипольный момент элементарных частиц
- •[Править] Дипольное приближение
- •[Править] Дипольное приближение для системы источников
- •[Править] Дипольное приближение для действия внешнего поля на систему зарядов
Проводящая система сердца
Прежде, чем знакомиться с дальнейшим материалом, рекомендуется вкратце освежить анатомические знания сердечной мышцы. Сердце - удивительный орган, обладающий клетками проводящей системы и сократительного миокарда, которые "заставляют" сердце ритмично сокращаться, выполняя функцию кровяного насоса.
|
|
Рис.1 Схема строения проводящей системы сердца
Из чего состоит проводящая система сердца?
-
Начинается проводящая система сердца синусовым узлом (узел Киса-Флака), который расположен субэпикардиально в верхней части правого предсердия между устьями полых вен. Это пучок специфических тканей, длиной 10-20 мм, шириной 3-5 мм. Узел состоит из двух типов клеток: P-клетки (генерируют импульсы возбуждения), T-клетки (проводят импульсы от синусового узла к предсердиям).
-
Далее следует атриовентрикулярный узел (узел Ашоффа-Тавара), который расположен в нижней части правого предсердия справа от межпредсердной перегородки, рядом с устьем коронарного синуса. Его длина 5 мм, толщина 2 мм. По аналогии с синусовым узлом, атриовентрикулярный узел также состоит из P-клеток и T-клеток.
-
Атриовентрикулярный узел переходит в пучок Гиса, который состоит из пенетрирующего (начального) и ветвящегося сегментов. Начальная часть пучка Гиса не имеет контактов с сократительным миокардом и мало чувствительна к поражению коронарных артерий, но легко вовлекается в патологические процессы, происходящие в фиброзной ткани, которая окружает пучок Гисса. Длина пучка Гисса составляет 20 мм.
-
Пучок Гиса разделяется на 2 ножки (правую и левую). Далее левая ножка пучка Гиса разделяется еще на две части. В итоге получается правая ножка и две ветви левой ножки, которые спускаются вниз по обеим стороная межжелудочковой перегородки. Правая ножка направляется к мышце правого желудочка сердца. Что до левой ножки, то мнения исследователей здесь расходятся. Считается, что передняя ветвь левой ножки пучка Гиса снабжает волокнами переднюю и боковую стенки левого желудочка; задняя ветвь - заднюю стенку левого желудочка, и нижние отделы боковой стенки.
-
правая ножка пучка Гиса;
-
правый желудочек;
-
задняя ветвь левой ножки пучка Гиса;
-
межжелудочковая перегородка;
-
левый желудочек;
-
передняя ветвь левой ножки;
-
левая ножка пучка Гиса;
-
пучок Гиса.
-
На рисунке представлен фронтальный разрез сердца (внутрижелудочковой части) с разветвлениями пучка Гиса. Внутрижелудочковую проводящую систему можно рассматривать как систему, состоящую из 5 основных частей: пучок Гиса, правая ножка, основная ветвь левой ножки, передняя ветвь левой ножки, задняя ветвь левой ножки. Наиболее тонкими, следовательно уязвимыми, являются правая ножка и передняя ветвь левой ножки пучка Гиса. Далее, по степени уязвимости: основной ствол левой ножки; пучок Гиса; задняя ветвь левой ножки. Ножки пучка Гиса и их ветви состоят из двух видов клеток - Пуркинье и клеток, по форме напоминающие клетки сократительного миокарда.
-
Ветви внутрижелудочковой проводящей системы постепенно разветвляются до более мелких ветвей и постепенно переходят в волокна Пуркинье, которые связываются непосредственно с сократительным миокардом желудочков, пронизывая всю мышцу сердца.
Сокращения сердечной мышцы (миокарда) происходят благодаря импульсам, возникающим в синусовом узле и распространяющимся по проводящей системе сердца: через предсердия, атриовентрикулярный узел, пучок Гиса, волокна Пуркинье - импульсы проводятся к сократительному миокарду.
Рассмотрим этот процесс подробно:
-
Возбуждающий импульс возникает в синусовом узле. Возбуждение синусового узла не отражается на ЭКГ.
-
Через несколько сотых долей секунды импульс из синусового узла достигает миокарда предсердий.
-
По предсердиям возбуждение распространяется по трем путям, соединяющим синусовый узел (СУ) с атриовентрикулярным узлом (АВУ):
-
Передний путь (тракт Бахмана) - идет по передневерхней стенке правого предсердия и разделяется на две ветви у межпредсердной перегородки - одна из которых подходит к АВУ, а другая - к левому предсердию, в результате чего, к левому предсердию импульс приходит с задержкой в 0,2 с;
-
Средний путь (тракт Венкебаха) - идет по межпредсердной перегородке к АВУ;
-
Задний путь (тракт Тореля) - идет к АВУ по нижней части межпредсердной перегородки и от него ответвляются волокна к стенке правого предсердия.
-
Возбуждение, передающееся от импульса, охватывает сразу весь миокард предсердий со скоростью 1 м/с.
-
Пройдя предсердия, импульс достигает АВУ, от которого проводящие волокна распространяются во все стороны, а нижняя часть узла переходит в пучок Гиса.
-
АВУ выполняет роль фильтра, задерживая прохождение импульса, что создает возможность для окончания возбуждения и сокращения предсердий до того, как начнется возбуждение желудочков. Импульс возбуждения распространяется по АВУ со скоростью 0,05-0,2 м/с; время прохождения импульса по АВУ длится порядка 0,08 с.
-
Между АВУ и пучком Гиса нет четкой границы. Скорость проведения импульсов в пучке Гиса составляет 1 м/с.
-
Далее возбуждение распространяется в ветвях и ножках пучка Гиса со скоростью 3-4 м/с. Ножки пучка Гиса, их разветвления и конечная часть пучка Гиса обладают функцией автоматизма, который составляет 15-40 импульсов в минуту.
-
Разветвления ножек пучка Гиса переходят в волокна Пуркинье, по которым возбуждение распространяется к миокарду желудочков сердца со скоростью 4-5 м/с. Волокна Пуркинье также обладают функцией автоматизма - 15-30 импульсов в минуту.
-
В миокарде желудочков волна возбуждения сначала охватывает межжелудочковую перегородку, после чего распространяется на оба желудочка сердца.
-
В желудочках процесс возбуждения идет от эндокарда к эпикарду. При этом во время возбуждения миокарда создается ЭДС, которая распространяется на поверхность человеческого тела и является сигналом, который регистрируется электрокардиографом.
Таким образом, в сердце имеется множество клеток, обладающих функцией автоматизма:
-
синусовый узел (автоматический центр первого порядка) - обладает наибольшим автоматизмом;
-
атриовентрикулярный узел (автоматический центр второго порядка);
-
пучок Гиса и его ножки (автоматический центр третьего порядка).
В норме существует только один водитель ритма - это синусовый узел, импульсы от которого распространяются к нижележащим источникам автоматизма до того, как в них закончится подготовка очередного импульса возбуждения, и разрушают этот процесс подготовки. Говоря проще, синусовый узел в норме является основным источником возбуждения, подавляя аналогичные сигналы в автоматических центрах второго и третьего порядка.
Автоматические центры второго и третьего порядка проявляют свою функцию только в патологических условиях, когда автоматизм синусового узла снижается, или же повышается их автоматизм.
Автоматический центр третьего порядка становится водителем ритма при снижении функций автоматических центров первого и второго порядков, а также при увеличении собственной автоматической функции.
Проводящая система сердца способна проводить импульсы не только в прямом направлении - от предсердий к желудочкам (антеградно), но и в обратном направлении - от желудочков к предсердиям (ретроградно).
Электри́ческий ди́польный моме́нт — векторная физическая величина, характеризующая, наряду с суммарным зарядом (и реже используемыми высшими мультипольными моментами), электрические свойства системы заряженных частиц (распределения зарядов) в смысле создаваемого ею поля и действия на нее внешних полей. Главная после суммарного заряда и положения системы в целом (ее радиус-вектора) характеристика конфигурации зарядов системы при наблюдении ее издали.
Дипольный момент — первый[прим 1] мультипольный момент.
Простейшая система зарядов, имеющая определенный (не зависящий от выбора начала координат) ненулевой дипольный момент — это диполь (две точечные частицы с одинаковыми по величине разноимёнными зарядами). Электрический дипольный момент такой системы по модулю равен произведению величины положительного заряда на расстояние между зарядами и направлен от отрицательного заряда к положительному, или:
— где q — величина положительного заряда, — вектор с началом в отрицательном заряде и концом в положительном.
Для системы из N частиц электрический дипольный момент равен
где qi — заряд частицы с номером i, а — её радиус-вектор; или, если суммировать отдельно по положительным и отрицательным зарядам:
где — число положительно/отрицательно заряженных частиц, N = N + + N − , — их заряды; — суммарные заряды положительной и отрицательной подсистем и радиус-векторы их «центров тяжести»[прим 2].
Электрический дипольный момент нейтральной системы зарядов не зависит от выбора начала координат, а определяется относительным расположением (и величинами) зарядов в системе.
Из определения видно, что дипольный момент аддитивен (дипольный момент наложения нескольких систем зарядов равен просто векторной сумме их дипольных моментов), а в случае нейтральных систем это свойство приобретает еще более удобную форму в силу изложенного в абзаце выше.
Подробности определения и формальные свойства [показать]
Электрический дипольный момент (если он ненулевой) определяет в главном приближении электрическое[прим 3] поле диполя (или любой ограниченной системы с суммарным нулевым зарядом) на большом расстоянии от него, а также воздействие на диполь внешнего электрического поля.
Физический и вычислительный смысл дипольного момента состоит в том, что он дает поправки первого порядка (чаще всего — малые) в положение каждого заряда системы по отношению к началу координат (которое может быть условным, но приближенно характеризует положение системы в целом — система при этом подразумевается достаточно компактной). Эти поправки входят в него в виду векторной суммы, и везде, где при вычислениях такая конструкция встречается (а в силу принципа суперпозиции и свойства сложения линейных поправок — см.Полный дифференциал — такая ситуация встречается часто), там в формулах оказывается дипольный момент.
Содержание [убрать]
|