- •Введение
- •Глава I предмет и значение логики
- •§ 1. Формы познания Формы чувственного познания
- •Формы абстрактного мышления
- •Растения делятся или на однолетние или на многолетние.
- •Особенности абстрактного мышления
- •§ 2. Понятие логической формы и логического закона
- •Понятие логической формы
- •Логические законы
- •Истинность мысли и формальная правильность рассуждений
- •Все металлы - твердые тела.
- •Все небесные тела – планеты
- •Все тигры полосатые.
- •4. Все ушастые тюлени – ластоногие.
- •Теоретическое и практическое значение логики
- •§ 3. Логика и язык
- •Семантические категории
- •Задачи к теме “Предмет и значение логики”
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •Содержание и объем понятия
- •Закон обратного отношения между объемами и содержаниями понятий
- •§ 2. Отношения между понятиями
- •Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- •Типы несовместимости: соподчинение, противоположность, противоречие
- •§ 3. Определение понятий
- •Правила явного определения. Ошибки, возможные в определении
- •Неявные определения
- •Определение через аксиомы
- •Использование определений понятий в процессе обучения
- •Приемы, сходные с определением понятий
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Виды деления: по видообразующему признаку и дихотомическое деление
- •Классификация
- •Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- •§ 5. Ограничение и обобщение понятий
- •II. Определить отношения между следующими понятиями:
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Суждение и предложение
- •§ 2. Простое суждение
- •Виды простых ассерторических суждений
- •1. Суждения свойства (атрибутивные).
- •2. Суждения с отношениями.
- •Категорические суждения и их виды (деление по количеству и качеству)
- •Объединенная классификация простых категорических суждений по количеству и качеству
- •Распределенность терминов в категорических суждениях
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Способы отрицания суждений
- •Отрицание сложных суждении
- •Исчисление высказываний
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •§5.Отношения между суждениями по значениям истинности
- •Противоположность (контрарность)
- •§ Б. Деление суждений по модальности
- •Задачи к теме “Суждение”
- •VII. Являются ли суждениями следующие предложения?
- •Глава IV законы (принципы) правильного мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании Закон тождества
- •Закон непротиворечия
- •Закон исключенного третьего
- •Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- •Закон достаточного основания
- •§ 3. Использование формально-логических законов в процессе обучения
- •Задачи к теме “Законы (принципы) правильного мышления”
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Понятие логического следования
- •§ 2. Дедуктивные умозаключения
- •Понятие правила вывода
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •S есть р
- •§ 4. Простой категорический силлогизм1
- •Фигуры и модусы категорического силлогизма
- •Особые правила фигур
- •Модусы категорического силлогизма.
- •Правила категорического силлогизма
- •/. Правила терминов
- •//. Правила посылок
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- •Все с суть d. Сорит (с общими посылками)
- •Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- •§ 7. Условные умозаключения
- •I. Утверждающий модус (modus ponens).
- •II. Отрицающий модус (modus tollens).
- •Первый вероятностный модус
- •Структура его: Cхема:
- •Второй вероятностный модус
- •§ 8. Разделительные умозаключения
- •§ 9. Условно-разделительные (лемматические) умозаключения
- •Дилемма1
- •Cхема Формула:
- •Трилемма
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •1. В умозаключении пропущено заключение
- •2. В умозаключении пропущена одна из посылок
- •1. Простая контрапозиция.
- •2. Сложная контрапозиция.
- •§ 11. Непрямые (косвенные) выводы
- •1. Рассуждение по правилу введения импликации
- •2. Правило сведения “к абсурду”
- •3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды Логическая природа индукции
- •Математическая индукция
- •Виды неполной индукции
- •2. Индукция через анализ и отбор фактов
- •Понятие вероятности
- •3. Научная индукция
- •§ 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- •Методы установления причинной связи
- •Метод сходства
- •Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- •Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- •§ 14. Дедукция и индукция в учебном процессе
- •Задачи к теме “Умозаключение”
- •3. Во всех городах за полярным кругом бывают белые ночи.
- •Все летучие мыши - представители отряда рукокрылых.
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •Структура доказательства: тезис, аргументы, демонстрация
- •Виды аргументов
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •§ 3. Понятие опровержения
- •1. Опровержение тезиса (прямое и косвенное)
- •II. Критика аргументов
- •III. Выявление несостоятельности демонстрации
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Правила по отношению к тезису
- •Ошибки относительно доказываемого тезиса
- •Правила по отношению к аргументам
- •Правило по отношению формы обоснования тезиса (демонстрации)
- •Ошибки в форме доказательства
- •3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- •§ 5. Понятие о софизмах и логических парадоксах
- •Понятие о логических парадоксах
- •Парадоксы теории множеств
- •§ 6. Искусство ведения дискуссии
- •Задачи к теме
- •1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- •1Цит. По: Русская литература. Л., 1980. С. 55.
- •2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- •3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Строгая аналогия
- •Нестрогая аналогия
- •Ложная аналогия
- •§ 2. Гипотеза и ее виды
- •Виды гипотез
- •§ 3. Построение гипотез
- •Способы подтверждения гипотез бывают такие:
- •Примеры гипотез, применяющихся на уроках в школе
- •Глава VIII роль логики в процессе обучения
- •§ 1. Логическая структура вопроса
- •Виды вопросов
- •Предпосылки вопросов
- •Правила постановки простых и сложных вопросов
- •Логическая структура и виды ответов
- •§ 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших школьников
- •Обобщение:
- •Ограничение:
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- •Развитие логического мышления на уроках математики
- •Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- •Формы активизации мыслительной деятельности , студентов в учебном процессе
- •Семинары и самостоятельные работы студентов
- •РРис.23
- •Все лисицы - позвоночные.
- •2.Все птицы имеют оперение.
- •Контрольные работы
- •Вопросы экзаменационных билетов
- •Кроссворд по теме “Понятие”
- •Ответы на кроссворд
- •Формы внеаудиторной работы со студентами
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- •Кроссворд, составленный ученицей 11 класса Татьяной и.'
- •Ответы на кроссворд
- •По горизонтали:
- •Ответы на кроссворд
- •Тест айзенка (стр. 342-358)
- •§ 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- •II. Требования к оформлению работы
- •1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- •1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- •Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- •Глава X этапы развития логики как науки
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Логика в Древней Индии
- •Логика Древнего Китая
- •Логика в Древней Греции
- •Логика в средние века
- •Логика эпохи Возрождения и Нового времени'
- •Логика в России
- •Математическая логика
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •§ 3. Интуиционистская логика
- •§ 4. Конструктивные логики
- •Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- •Конструктивная логика а. А. Маркова
- •§ 5. Многозначные логики
- •Трехзначная система Лукасевнча
- •Отрицание Лукасевича
- •Трехзначная система Гейтинга
- •Импликация Гейтинга
- •Две бесконечнозначные системы Гетмановой:
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •§ 7. Модальные логики
- •§ 8. Положительные логики
- •§ 9. Паранепротиворечивая логика
- •Заключение
- •1. Предмет и значение логики.
- •2. Понятие.
- •3. Суждение.
- •4. Умозаключение.
- •5. Логические основы теории аргументации.
- •Вопрос 260-265
- •Еебулид 383
- •ИвинА.А.97,43”
- •ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- •Сократ 380,381
- •Свинцов в. И. Логика. М., 1987.
- •II. Популярная литература
- •III. Литература по педагогическим приложениям логики
Понятие о логических парадоксах
Парадокс - это рассуждение, доказывающее как истинность, так и ложность некоторого суждения или (иными словами) доказывающее как это суждение, так и его отрицание. Парадоксы
_________________________
'См:-.БрадисВ,. Минковский В., ХарчевА. Ошибки в математических рассуждениях. М., 1959; Нагибин Ф. Ф. Математическая шкатулка. М„ 1964.
2Сm.: Нагибин Ф.Ф. Математическая шкатулка. М., 1964. С. 81-82.
225
были известны еще в древности. Их примерами являются: “Куча”, “Лысый”, “Каталог всех нормальных каталогов”, “Мэр города”, “Генерал и брадобрей” и др. Рассмотрим некоторые из них.
Парадокс “Куча”. Разница между кучей и не-кучей - не в одной песчинке. Пусть у нас есть куча (например, песка). Начинаем из нее брать каждый раз по одной песчинке, и куча остается кучей. Продолжаем этот процесс. Если 100 песчинок - куча, то 99 - тоже куча и т. д. 10 песчинок - куча, 9 - куча,... 3 песчинки - куча, 2 песчинки - куча, 1 песчинка - куча. Итак, суть парадокса в том, что постепенные количественные изменения (убавление на 1 песчинку) не приводят к качественным изменениям.
Парадокс “Лысый” аналогичен парадоксу “Куча”, т. е. разница между лысым и не-лысым не в одной волосинке.
Парадоксы теории множеств
В письме Готтлобу Фреге от 16 июня 1902 г. Бертран Рассел сообщил о том, что он обнаружил парадокс множества всех нормальных множеств (нормальным множеством называется множество, не содержащее себя в качестве элемента).
Примерами таких парадоксов (противоречий) являются “Каталог всех нормальных каталогов”, “Мэр города”, “Генерал и брадобрей” и др.
Парадокс, называемый “Мэр города”, состоит в следующем: каждый мэр города живет или в своем городе, или вне его. Был издан приказ о выделении одного специального города, где жили бы только мэры, не живущие в своем городе. Где должен жить мэр этого специального города? а). Если он хочет жить в своем городе, то он не может этого сделать, так как там живут только мэры, не живущие в своем городе, б). Если же он не хочет жить в своем городе, то, как и все мэры, не живущие в своих городах, должен жить в отведенном городе, т. е. в своем. Итак, он не может жить ни в своем городе, ни вне его.
Парадокс “Генерал и брадобрей” состоит в следующем: каждый солдат может сам себя брить или бриться у другого солдата. Генерал издал приказ о выделении одного специального солдата-брадобрея, у которого брились бы только те солдаты, которые себя не бреют. У кого должен бриться этот специально выделенный
226
солдат-брадобрей? а). Если он хочет сам себя брить, то он этого не может сделать, так как он может брить только тех солдат, которые себя не бреют, б). Если он не будет себя брить, то, как и все солдаты, не бреющие себя, он должен бриться только у одного специального солдата-брадобрея, т. е. у себя. Итак, он не может ни брить себя, ни не брить себя.
Этот парадокс аналогичен парадоксу “Мэр города”. Парадокс “Каталог всех нормальных каталогов” получается так. Каталоги подразделяются на два рода:
1) такие, которые в числе перечисляемых каталогов не упоминают себя (нормальные), и
2) такие, которые сами входят в число перечисляемых каталогов (не-нормальные).
Библиотекарю дается задание составить каталог всех нормальных и только нормальных каталогов. Должен ли он при составлении своего каталога упомянуть и составленный им? Если он упомянет его, то составленный им каталог окажется не-нормальным, т. е. он не может упоминать его. Если же библиотекарь не упомянет свой каталог, то один из нормальных каталогов - тот, который он составил, - окажется неупомянутым, хотя должен был бы быть упомянутым, как все нормальные каталоги. Итак, библиотекарь не может ни упомянуть, ни не упомянуть составляемый им каталог. Как же тут быть? Посмотрим на этом примере, как разрешаются подобные парадоксы.
Естественно заметить, что понятие “нормальный каталог” не имеет фиксированного объема, пока не установлено, какие каталоги следует рассматривать (в какой, например, библиотеке и в какое время находящиеся). Если будет дано задание составить каталог всех нормальных каталогов на 20 июня 1998 г., то объем понятия “каталог всех нормальных каталогов” будет фиксирован и при составлении своего каталога библиотекарь не должен будет его упоминать. Но если аналогичное задание будет дано уже после того, как каталог составлен, то придется учесть и этот каталог. Так разрешается парадокс.
Таким образом, в логику входит категория времени, категория изменения: приходится рассматривать изменяющиеся объемы понятий. А рассмотрение объема в процессе его изменения – это
227
уже аспект диалектической логики. Трактовка парадоксов математической логики и теории множеств, связанных с нарушением требований диалектической логики, принадлежит С. А. Яновской. В примере с каталогом удается избежать противоречия потому, что объем понятия “каталог всех нормальных каталогов” берется на какое-то определенное, точно фиксированное время, например, на 20 июня 1998 г. Имеются и другие способы избежать противоречий такого рода.