- •Введение
- •Глава I предмет и значение логики
- •§ 1. Формы познания Формы чувственного познания
- •Формы абстрактного мышления
- •Растения делятся или на однолетние или на многолетние.
- •Особенности абстрактного мышления
- •§ 2. Понятие логической формы и логического закона
- •Понятие логической формы
- •Логические законы
- •Истинность мысли и формальная правильность рассуждений
- •Все металлы - твердые тела.
- •Все небесные тела – планеты
- •Все тигры полосатые.
- •4. Все ушастые тюлени – ластоногие.
- •Теоретическое и практическое значение логики
- •§ 3. Логика и язык
- •Семантические категории
- •Задачи к теме “Предмет и значение логики”
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •Содержание и объем понятия
- •Закон обратного отношения между объемами и содержаниями понятий
- •§ 2. Отношения между понятиями
- •Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- •Типы несовместимости: соподчинение, противоположность, противоречие
- •§ 3. Определение понятий
- •Правила явного определения. Ошибки, возможные в определении
- •Неявные определения
- •Определение через аксиомы
- •Использование определений понятий в процессе обучения
- •Приемы, сходные с определением понятий
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Виды деления: по видообразующему признаку и дихотомическое деление
- •Классификация
- •Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- •§ 5. Ограничение и обобщение понятий
- •II. Определить отношения между следующими понятиями:
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Суждение и предложение
- •§ 2. Простое суждение
- •Виды простых ассерторических суждений
- •1. Суждения свойства (атрибутивные).
- •2. Суждения с отношениями.
- •Категорические суждения и их виды (деление по количеству и качеству)
- •Объединенная классификация простых категорических суждений по количеству и качеству
- •Распределенность терминов в категорических суждениях
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Способы отрицания суждений
- •Отрицание сложных суждении
- •Исчисление высказываний
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •§5.Отношения между суждениями по значениям истинности
- •Противоположность (контрарность)
- •§ Б. Деление суждений по модальности
- •Задачи к теме “Суждение”
- •VII. Являются ли суждениями следующие предложения?
- •Глава IV законы (принципы) правильного мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании Закон тождества
- •Закон непротиворечия
- •Закон исключенного третьего
- •Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- •Закон достаточного основания
- •§ 3. Использование формально-логических законов в процессе обучения
- •Задачи к теме “Законы (принципы) правильного мышления”
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Понятие логического следования
- •§ 2. Дедуктивные умозаключения
- •Понятие правила вывода
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •S есть р
- •§ 4. Простой категорический силлогизм1
- •Фигуры и модусы категорического силлогизма
- •Особые правила фигур
- •Модусы категорического силлогизма.
- •Правила категорического силлогизма
- •/. Правила терминов
- •//. Правила посылок
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- •Все с суть d. Сорит (с общими посылками)
- •Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- •§ 7. Условные умозаключения
- •I. Утверждающий модус (modus ponens).
- •II. Отрицающий модус (modus tollens).
- •Первый вероятностный модус
- •Структура его: Cхема:
- •Второй вероятностный модус
- •§ 8. Разделительные умозаключения
- •§ 9. Условно-разделительные (лемматические) умозаключения
- •Дилемма1
- •Cхема Формула:
- •Трилемма
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •1. В умозаключении пропущено заключение
- •2. В умозаключении пропущена одна из посылок
- •1. Простая контрапозиция.
- •2. Сложная контрапозиция.
- •§ 11. Непрямые (косвенные) выводы
- •1. Рассуждение по правилу введения импликации
- •2. Правило сведения “к абсурду”
- •3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды Логическая природа индукции
- •Математическая индукция
- •Виды неполной индукции
- •2. Индукция через анализ и отбор фактов
- •Понятие вероятности
- •3. Научная индукция
- •§ 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- •Методы установления причинной связи
- •Метод сходства
- •Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- •Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- •§ 14. Дедукция и индукция в учебном процессе
- •Задачи к теме “Умозаключение”
- •3. Во всех городах за полярным кругом бывают белые ночи.
- •Все летучие мыши - представители отряда рукокрылых.
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •Структура доказательства: тезис, аргументы, демонстрация
- •Виды аргументов
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •§ 3. Понятие опровержения
- •1. Опровержение тезиса (прямое и косвенное)
- •II. Критика аргументов
- •III. Выявление несостоятельности демонстрации
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Правила по отношению к тезису
- •Ошибки относительно доказываемого тезиса
- •Правила по отношению к аргументам
- •Правило по отношению формы обоснования тезиса (демонстрации)
- •Ошибки в форме доказательства
- •3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- •§ 5. Понятие о софизмах и логических парадоксах
- •Понятие о логических парадоксах
- •Парадоксы теории множеств
- •§ 6. Искусство ведения дискуссии
- •Задачи к теме
- •1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- •1Цит. По: Русская литература. Л., 1980. С. 55.
- •2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- •3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Строгая аналогия
- •Нестрогая аналогия
- •Ложная аналогия
- •§ 2. Гипотеза и ее виды
- •Виды гипотез
- •§ 3. Построение гипотез
- •Способы подтверждения гипотез бывают такие:
- •Примеры гипотез, применяющихся на уроках в школе
- •Глава VIII роль логики в процессе обучения
- •§ 1. Логическая структура вопроса
- •Виды вопросов
- •Предпосылки вопросов
- •Правила постановки простых и сложных вопросов
- •Логическая структура и виды ответов
- •§ 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших школьников
- •Обобщение:
- •Ограничение:
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- •Развитие логического мышления на уроках математики
- •Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- •Формы активизации мыслительной деятельности , студентов в учебном процессе
- •Семинары и самостоятельные работы студентов
- •РРис.23
- •Все лисицы - позвоночные.
- •2.Все птицы имеют оперение.
- •Контрольные работы
- •Вопросы экзаменационных билетов
- •Кроссворд по теме “Понятие”
- •Ответы на кроссворд
- •Формы внеаудиторной работы со студентами
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- •Кроссворд, составленный ученицей 11 класса Татьяной и.'
- •Ответы на кроссворд
- •По горизонтали:
- •Ответы на кроссворд
- •Тест айзенка (стр. 342-358)
- •§ 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- •II. Требования к оформлению работы
- •1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- •1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- •Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- •Глава X этапы развития логики как науки
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Логика в Древней Индии
- •Логика Древнего Китая
- •Логика в Древней Греции
- •Логика в средние века
- •Логика эпохи Возрождения и Нового времени'
- •Логика в России
- •Математическая логика
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •§ 3. Интуиционистская логика
- •§ 4. Конструктивные логики
- •Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- •Конструктивная логика а. А. Маркова
- •§ 5. Многозначные логики
- •Трехзначная система Лукасевнча
- •Отрицание Лукасевича
- •Трехзначная система Гейтинга
- •Импликация Гейтинга
- •Две бесконечнозначные системы Гетмановой:
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •§ 7. Модальные логики
- •§ 8. Положительные логики
- •§ 9. Паранепротиворечивая логика
- •Заключение
- •1. Предмет и значение логики.
- •2. Понятие.
- •3. Суждение.
- •4. Умозаключение.
- •5. Логические основы теории аргументации.
- •Вопрос 260-265
- •Еебулид 383
- •ИвинА.А.97,43”
- •ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- •Сократ 380,381
- •Свинцов в. И. Логика. М., 1987.
- •II. Популярная литература
- •III. Литература по педагогическим приложениям логики
§5.Отношения между суждениями по значениям истинности
Суждения, как и понятия, делятся на сравнимые (имеют общи субъект или предикат) и несравнимые. Сравнимые суждения делятся на совместимые и несовместимые.
В математической логике два высказывания р и q называйся несовместимыми, если из истинности одного из них необходимо следует ложность другого (т. е .р и q никогда не могут казаться одновременно истинными). “Это понятие легко распространить на любое число высказываний: высказывания р1,p2 ... р11 называются несовместимыми, если не может оказаться, что все они являются одновременно истинными”'.
Совместимые выражают одну и ту же мысль полностью или лишь в некоторой части. Отношения совместимости: эквивалентность, логическое подчинение, частичное совпадение (субконтрарность). Совместимые эквивалентные суждения выражают одну и ту же мысль в различной форме (“Юрий Гагарин - первый космонавт” и “Юрий Гагарин первым полетел в космос”). Субъект здесь один и тот же, а предикаты различные по форме, но одинаковые по смыслу. В двух эквивалентных суждениях “Михаил Шолохов-лауреат Нобелевской премии” и “Автор романа “Тихий Дон” -лауреат Нобелевской премии” одинаковыми являются предикаты, а различными по форме выражения, но тождественными понятиями -субъекты.
Если два высказывания эквивалентны, то невозможно, чтобы одно из них было истинным, а другое ложным.
В сочинении, при заучивании материала, в устном изложении текста, при переводе с одного языка на другой - всюду требуется умение кратко и корректно излагать свои мысли.
Совместимые суждения, находящиеся в отношении логического подчинения, имеют общий предикат; понятия, выражающие субъекты двух таких суждений, также находятся в отношении логического подчинения. Отношения между суждениями по истинности принято схематически изображать в виде “логического квадрата” (рис. 17).
_____________________
'Кемени Д., Снелл Д., Томпсон Д.. Введение в конечную математику. // Пер. с англ.. М.,1963. С.50.
92
Возьмем суждение “Все слоны – млекопитающие”. Это суждение А общеутвердительное (подчиняющее). Суждение! - “Некоторые слоны - млекопитающие” - подчиненное.
Для суждений А и I, а также Е и О, находящихся в отношении логического подчинения, истинность общего суждения определяет истинность частного, подчиненного суждения. Но ложность общего суждения оставляет частное суждение неопределенным.
Противоположность (контрарность)
Субконтрарность.
Рис.17
Истинность частного суждения оставляет общее суждение неопределенным (при нарушении этого правила может возникнуть логическая ошибка - “поспешное обобщение”). Ложность частного суждения обусловливает ложность общего суждения. Если истинно суждение “Ни одна хлорелла не является многоклеточной зеленой водорослью”, то будет истинным и суждение “Некоторые хлореллы не являются многоклеточными зелеными водорослями”. Умозаключение от общего суждения к логически подчиненному ему частному суждению всегда будет давать истинное заключение.
В отношении частичного совпадения (субконтрарности) находятся два таких совместимых суждения I и О, которые
93
имеют одинаковые субъекты и одинаковые предикаты, но различаются по качеству. Например, (I) “Некоторые свидетели дают истинные показания” и (О) “Некоторые свидетели не дают истинных показаний”. Оба они одновременно могут быть истинными, но не могут быть одновременно ложными. Если одно из них ложно, то другое обязательно истинно. Но если одно из них истинно, то другое неопределенно (оно может быть либо истинным, либо ложным). Например, если истинно суждение (I) “Некоторые книги этой библиотеки изданы на корейском языке”, то суждение (О) “Некоторые книги этой библиотеки не являются изданными на корейском языке” будет неопределенным, т.е. оно может быть как истинным, так и ложным.
Отношения несовместимости: противоположность, противоречие. По “логическому квадрату” в отношении противоположности (контрарности) находятся суждения А и Е. Два суждения: (А) “Все люди трудятся добросовестно” и (Е) “Ни один человек не трудится добросовестно” - оба ложны. Но А и Е не могут быть оба истинными. Если одно из противоположных суждений истинно, то другое будет ложным.
Итак, из истинности одного из противоположных суждений вытекает ложность другого, но ложность одного из них оставляет другое суждение неопределенным.
В отношении противоречия (контрадикторности) находятся суждения А и О, а также Е и I. Два противоречащих суждения не могут быть одновременно истинными и одновременно ложными. Если в настоящее время истинно суждение (I) “Некоторые летчики - космонавты”, то ложным будет суждение (Е) “Ни один летчик не является космонавтом”.
Закономерности, выражающие отношения между суждениями по истинности, имеют большое познавательное значение, так как они помогают избежать ошибок при непосредственных умозаключениях, производимых из одной посылки (одного суждения).