- •Введение
- •Глава I предмет и значение логики
- •§ 1. Формы познания Формы чувственного познания
- •Формы абстрактного мышления
- •Растения делятся или на однолетние или на многолетние.
- •Особенности абстрактного мышления
- •§ 2. Понятие логической формы и логического закона
- •Понятие логической формы
- •Логические законы
- •Истинность мысли и формальная правильность рассуждений
- •Все металлы - твердые тела.
- •Все небесные тела – планеты
- •Все тигры полосатые.
- •4. Все ушастые тюлени – ластоногие.
- •Теоретическое и практическое значение логики
- •§ 3. Логика и язык
- •Семантические категории
- •Задачи к теме “Предмет и значение логики”
- •Глава II понятие
- •§ 1. Понятие как форма мышления
- •Содержание и объем понятия
- •Закон обратного отношения между объемами и содержаниями понятий
- •§ 2. Отношения между понятиями
- •Типы совместимости: равнозначность (тождество), перекрещивание, подчинение (отношение рода и вида)
- •Типы несовместимости: соподчинение, противоположность, противоречие
- •§ 3. Определение понятий
- •Правила явного определения. Ошибки, возможные в определении
- •Неявные определения
- •Определение через аксиомы
- •Использование определений понятий в процессе обучения
- •Приемы, сходные с определением понятий
- •§ 4. Деление понятий. Классификация
- •Правила деления понятий
- •Виды деления: по видообразующему признаку и дихотомическое деление
- •Классификация
- •Использование естественных классификаций в школах и педагогических средних и высших учебных заведениях
- •§ 5. Ограничение и обобщение понятий
- •II. Определить отношения между следующими понятиями:
- •Глава III суждение
- •§ 1. Общая характеристика суждения
- •Суждение и предложение
- •§ 2. Простое суждение
- •Виды простых ассерторических суждений
- •1. Суждения свойства (атрибутивные).
- •2. Суждения с отношениями.
- •Категорические суждения и их виды (деление по количеству и качеству)
- •Объединенная классификация простых категорических суждений по количеству и качеству
- •Распределенность терминов в категорических суждениях
- •§ 3. Сложное суждение и его виды. Исчисление высказываний
- •Способы отрицания суждений
- •Отрицание сложных суждении
- •Исчисление высказываний
- •§ 4. Выражение логических связок (логических постоянных) в естественном языке
- •§5.Отношения между суждениями по значениям истинности
- •Противоположность (контрарность)
- •§ Б. Деление суждений по модальности
- •Задачи к теме “Суждение”
- •VII. Являются ли суждениями следующие предложения?
- •Глава IV законы (принципы) правильного мышления
- •§ 1. Понятие логического закона
- •§ 2. Законы логики и их роль в познании Закон тождества
- •Закон непротиворечия
- •Закон исключенного третьего
- •Специфика действия закона исключенного третьего при наличии “неопределенности” в познании
- •Закон достаточного основания
- •§ 3. Использование формально-логических законов в процессе обучения
- •Задачи к теме “Законы (принципы) правильного мышления”
- •Глава V умозаключение
- •§ 1. Общее понятие об умозаключении
- •Понятие логического следования
- •§ 2. Дедуктивные умозаключения
- •Понятие правила вывода
- •§ 3. Выводы из категорических суждений посредством их преобразования
- •S есть р
- •§ 4. Простой категорический силлогизм1
- •Фигуры и модусы категорического силлогизма
- •Особые правила фигур
- •Модусы категорического силлогизма.
- •Правила категорического силлогизма
- •/. Правила терминов
- •//. Правила посылок
- •§ 5. Сокращенный категорический силлогизм (энтимема)
- •§ 6. Сложные и сложносокращенные силлогизмы: (полисиллогизмы, сориты, эпихейрема)
- •Все с суть d. Сорит (с общими посылками)
- •Выводы, основанные на логических связях между суждениями (выводы логики высказываний)
- •§ 7. Условные умозаключения
- •I. Утверждающий модус (modus ponens).
- •II. Отрицающий модус (modus tollens).
- •Первый вероятностный модус
- •Структура его: Cхема:
- •Второй вероятностный модус
- •§ 8. Разделительные умозаключения
- •§ 9. Условно-разделительные (лемматические) умозаключения
- •Дилемма1
- •Cхема Формула:
- •Трилемма
- •§ 10. Сокращенные условные, разделительные и условно-разделительные умозаключения
- •1. В умозаключении пропущено заключение
- •2. В умозаключении пропущена одна из посылок
- •1. Простая контрапозиция.
- •2. Сложная контрапозиция.
- •§ 11. Непрямые (косвенные) выводы
- •1. Рассуждение по правилу введения импликации
- •2. Правило сведения “к абсурду”
- •3. Правило непрямого вывода - рассуждение “от противного” (противоречащего)
- •§ 12. Индуктивные умозаключения и их виды Логическая природа индукции
- •Математическая индукция
- •Виды неполной индукции
- •2. Индукция через анализ и отбор фактов
- •Понятие вероятности
- •3. Научная индукция
- •§ 13. Индуктивные методы установления причинных связей Понятие причины и следствия
- •Методы установления причинной связи
- •Метод сходства
- •Если изменение одного обстоятельства всегда вызывает изменение другого, то первое обстоятельство есть причина второго. Метод остатков
- •Если известно, что причиной исследуемого явления не служат необходимые для него обстоятельства, кроме одного, то это одно обстоятельство и есть, вероятно, причина данного явления.
- •§ 14. Дедукция и индукция в учебном процессе
- •Задачи к теме “Умозаключение”
- •3. Во всех городах за полярным кругом бывают белые ночи.
- •Все летучие мыши - представители отряда рукокрылых.
- •Глава VI логические основы теории аргументации
- •§ 1. Понятие доказательства
- •Структура доказательства: тезис, аргументы, демонстрация
- •Виды аргументов
- •§ 2. Прямое и непрямое (косвенное) доказательства
- •§ 3. Понятие опровержения
- •1. Опровержение тезиса (прямое и косвенное)
- •II. Критика аргументов
- •III. Выявление несостоятельности демонстрации
- •§ 4. Правила доказательного рассуждения. Логические ошибки, встречающиеся в доказательствах и опровержениях
- •Правила по отношению к тезису
- •Ошибки относительно доказываемого тезиса
- •Правила по отношению к аргументам
- •Правило по отношению формы обоснования тезиса (демонстрации)
- •Ошибки в форме доказательства
- •3. Нарушение правил умозаключений (дедуктивных, индуктивных, по аналогии);
- •§ 5. Понятие о софизмах и логических парадоксах
- •Понятие о логических парадоксах
- •Парадоксы теории множеств
- •§ 6. Искусство ведения дискуссии
- •Задачи к теме
- •1Ушинский к. Д. Соб. Соч. М.-л., 1948. Т. 1. С. 397.
- •1Цит. По: Русская литература. Л., 1980. С. 55.
- •2Huкoлa Себастьен де Шамфор. Из максим и мыслей, афоризмов и анекдотов // Пер. С франц. Орел. 1991. С. 45,47-49.
- •3Смаллиан р. Как же называется эта книга? // Пер. С англ. М., 1981. С. 74,123.
- •Глава VII аналогия и гипотеза. Их роль в учебном процессе
- •§ 1. Умозаключение по аналогии и его виды
- •Строгая аналогия
- •Нестрогая аналогия
- •Ложная аналогия
- •§ 2. Гипотеза и ее виды
- •Виды гипотез
- •§ 3. Построение гипотез
- •Способы подтверждения гипотез бывают такие:
- •Примеры гипотез, применяющихся на уроках в школе
- •Глава VIII роль логики в процессе обучения
- •§ 1. Логическая структура вопроса
- •Виды вопросов
- •Предпосылки вопросов
- •Правила постановки простых и сложных вопросов
- •Логическая структура и виды ответов
- •§ 2. К. Д. Ушинский и в. А. Сухомлинский о формировании логического мышления в процессе обучения в начальной школе
- •§ 3. Развитие логического мышления младших школьников
- •Обобщение:
- •Ограничение:
- •§ 4. Развитие логического мышления учащихся в процессе обучения в средних и старших классах Развитие логического мышления учащихся на уроках литературы (из опыта о. Ю. Богдановой)
- •Развитие логического мышления на уроках математики
- •Глава IX методика преподавания логики в педагогических высших и средних учебных заведениях и школах
- •§ 1. Формирование логической культуры как условие гуманитаризации педагогического образования
- •Формы активизации мыслительной деятельности , студентов в учебном процессе
- •Семинары и самостоятельные работы студентов
- •РРис.23
- •Все лисицы - позвоночные.
- •2.Все птицы имеют оперение.
- •Контрольные работы
- •Вопросы экзаменационных билетов
- •Кроссворд по теме “Понятие”
- •Ответы на кроссворд
- •Формы внеаудиторной работы со студентами
- •§ 2. Специфика методики преподавания логики в средних педагогических учебных заведениях: педучилищах, педколледжах, подклассах (из опыта работы)
- •Кроссворд, составленный ученицей 11 класса Татьяной и.'
- •Ответы на кроссворд
- •По горизонтали:
- •Ответы на кроссворд
- •Тест айзенка (стр. 342-358)
- •§ 3. Методика повышения логической культуры учащихся начальной и средней школы (из опыта работы)
- •II. Требования к оформлению работы
- •1. В письменном отчете о проведенной педпрактике по логике необходимо описать проведенные занятия с учащимися и сделать приложение по следующей схеме (см. Табл., с. 361).
- •1См.: Гетманова а.Д. Учебник по логике. Серия “Российский лицей”. М.,1994. С. 54-57.
- •Задания по логике для студентов второго курса на период педагогической практики в 1987/88 учебном году
- •Глава X этапы развития логики как науки
- •§ 1. Краткие сведения из истории классической и неклассических логик
- •Логика в Древней Индии
- •Логика Древнего Китая
- •Логика в Древней Греции
- •Логика в средние века
- •Логика эпохи Возрождения и Нового времени'
- •Логика в России
- •Математическая логика
- •§ 2. Развитие логики в связи с проблемой обоснования математики
- •§ 3. Интуиционистская логика
- •§ 4. Конструктивные логики
- •Конструктивные исчисления высказываний в. И. Гливенко и а. Н. Колмогорова
- •Конструктивная логика а. А. Маркова
- •§ 5. Многозначные логики
- •Трехзначная система Лукасевнча
- •Отрицание Лукасевича
- •Трехзначная система Гейтинга
- •Импликация Гейтинга
- •Две бесконечнозначные системы Гетмановой:
- •§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
- •§ 7. Модальные логики
- •§ 8. Положительные логики
- •§ 9. Паранепротиворечивая логика
- •Заключение
- •1. Предмет и значение логики.
- •2. Понятие.
- •3. Суждение.
- •4. Умозаключение.
- •5. Логические основы теории аргументации.
- •Вопрос 260-265
- •Еебулид 383
- •ИвинА.А.97,43”
- •ЛуллийР. 385 Львов м.Р. 273, 274, 275,293, 294, 299, 329 Льюис к. И. 434,435,436,437, 443,457
- •Сократ 380,381
- •Свинцов в. И. Логика. М., 1987.
- •II. Популярная литература
- •III. Литература по педагогическим приложениям логики
§ 6. Законы исключенного третьего и непротиворечия в неклассических логиках (многозначных, интуиционистской, конструктивных)
В главе IV “Законы (принципы) правильного мышления” была проанализирована специфика действия закона исключенного третьего при наличии “неопределенности” в познании, сделан вывод, что закон этот применяется там, где познание имеет дело с жесткой ситуацией: или - или, истина - ложь. Во многих неклассических логических системах формулы, соответствующие законам исключенного третьего и непротиворечия, не являются тавтологиями.
Ниже приведена таблица (см. с. 430), в которой знаком “ + ” обозначено то, что в указанной логической системе закон непротиворечия и закон исключенного третьего, т. е. формулы и , являются тавтологиями (или выводимыми формулами), и соответственно знаком “ - ”, когда не являются. Рассмотрено, кроме того, отрицание закона непротиворечия, выражающееся формулой , и отрицание закона исключенного третьего, выражающееся формулой . В этих формулах имеется в виду та форма отрицания, которая принята в указанной логической системе.
В интуиционистской и конструктивных логиках закон исключенного третьего для бесконечных множеств “ не работает ”. Осуществимость в конструктивной математике понимается как потенциальная осуществимость конструктивного процесса, дающего в результате один из членов дизъюнкции, который должен
429
Вид логической системы |
Закон исключенного третьего a
|
Закон непротиворечия
|
Отрицание закона исключенного третьего
|
Отрицания закона непротиворечия
|
Формальное противоречие
|
1. Двузначная классическая логика |
+ |
+ |
- |
- |
- |
2. Трехзначная логика Лукасевича |
- |
- |
- |
- |
- |
3. Трехзначная логика Рейтинга |
- |
+ |
- |
- |
- |
4. Трехзнач-ная логика Рейхенба-ха: а)цикличе-ское отрицание |
-
|
- |
- |
- |
- |
б) диаметраль-ное отрицание |
- |
- |
- |
- |
- |
в) полное отрицание |
+ |
+ |
- |
- |
- |
5. т-значная логика Поста: а)первое отрицание |
- |
- |
- |
- |
- |
б)второе отрицание |
- |
- |
- |
- |
- |
6. Конструктив-ная логика Маркова |
- |
+ |
- |
- |
- |
7. Конструктив-ная логика Гливенко |
- |
+ |
- |
- |
- |
8. Конструктив-ная логика Колмогорова |
- |
+ |
- |
- |
- |
9. Интуиционистская логика Гейтинга |
- |
+ |
- |
- |
- |
истинным. Но так как для бесконечных множеств нет алгоритма распознавания, что является истинным: а или не-а, то конструктивная логика отвергает закон исключенного третьего в пределах конструктивной математики.
Итак, из таблицы видно, что формула a , соответствующая закону исключенного третьего, из рассмотренных 12 видов отрицания не является тавтологией, или доказуемой формулой, для 10 видов.
430
Специфика закона непротиворечия в неклассических логиках
В результате исследования 9 формализованных логических систем выявлено, что из 12 приведенных видов отрицания для 7 видов закон непротиворечия является тавтологией (или доказуемой формулой), для остальных же 5 закон непротиворечия тавтологией (доказуемой формулой) не является. По сравнению с законом исключенного третьего закон непротиворечия более устойчив.
Закон непротиворечия не является тавтологией во многих многозначных логиках. В классической, интуиционистской и конструктивных логиках закон непротиворечия, наоборот, признается неограниченно действующим. Причина в том, что в многозначных логиках число значений истинности может быть как конечным (большим 2), так и бесконечным. В логических системах, в которых отражена жесткая ситуация, “или - или” (истина - ложь), закон непротиворечия и закон исключенного третьего -тавтологии. Но это предельные случаи в познании (истина или ложь). Если же в процессе познания мы еще не достигли истины или еще не опровергли какое-либо утверждение (доказав его ложность), то нам приходится оперировать не истинными или ложными, а неопределенными суждениями.
Классическая двузначная логика должна быть дополнена многозначными логиками, в частности бесконечнозначной логикой, которая применима в процессе рассуждения об объектах, отражаемых в понятиях с нефиксированным объемом, и бесконечное число значений истинности которой лежит в интервале от 1 до 0. Совсем другие ситуации в познании отражены в конструктивных и интуиционистской логиках: конструктивный процесс или имеется (осуществляется), или его нет, но то и другое не может иметь места одновременно по отношению к одному и тому же конструктивному объекту или процессу, поэтому закон непротиворечия в этих логиках действует неограниченно. В конструктивных логиках приняты абстракции, отличные от тех, которые приняты в многозначных логиках. В конструктивных и интуиционистской логиках принимаются лишь два знамения истинности - истина и
431
ложь, доказуемо (выводимо) или недоказуемо (невыводимо), поэтому закон непротиворечия - выводимая формула.
Однако независимо от того, является ли закон непротиворечия в той или иной логической системе тавтологией или не является, сами логические системы строятся непротиворечиво:
иными словами, метатеория (металогика) построения формализованных систем подчиняется закону непротиворечия, иначе такие системы были бы бесполезными, так как в них было бы выводимо все что угодно - как истина, так и ложь.
Очень важным в гносеологическом и логическом плане результатом является то, что закон непротиворечия и закон исключенного третьего нельзя опровергнуть, так как отрицание этих законов ни в одной из известных форм, ни в одной из исследованных автором 18 логических системах не является тавтологией (или выводимой, доказуемой формулой), что свидетельствует об их фундаментальной роли в познании. Закон непротиворечия - один из основных законов правильного человеческого мышления - устойчив, его нельзя опровергнуть и заменить другим, в противном случае стерлось бы различие в познании между истиной как его целью и ложью.
Многообразие логических систем свидетельствует о развитии науки логики в целом и ее составных частей, в том числе теории основных фундаментальных формально-логических законов - закона непротиворечия и закона исключенного третьего.