
- •1. Естествознание. История естествознания.
- •2. Основные теории (концепции) естествознания.
- •1. Физика
- •5.Биология
- •3. Физика. Классическая механика.
- •4. Специальная теория относительности.
- •5. Общая теория относительности.
- •6. Квантовая физика. Гипотеза Планка. Уравнение Шредингера.
- •2. (Правило частот): при переходе атома из одного стационарного состояния в другое испускается или поглощается один фотон.
- •7. Квантовая теория поля. Виртуальный механизм взаимодействия элементарных частиц. Спин.
- •8. Изотопический спин. Типы взаимодействий. Объединение типов взаимодействий.
- •9. Классификация элементарных частиц.
- •10. Калибровочная инвариантность. Спонтанное нарушение симметрии.
- •11. Иерархия познания и группа симметрий. Симметрия и законы сохранения.
- •12. Классическая космология.
- •13. Теория «инфляционной вселенной».
- •14. Химия. Стехиометрические законы. Строение атома. Заполнение электронных оболочек.
- •15. Взаимодействие между атомами и молекулами. Молекулярные связи.
- •16. Геология. Геологическое время и его измерение.
- •17. Строение Земли.
- •18. Эволюция Земли.
- •19. История развития геологических теорий.
- •20. Биология. Происхождение и эволюция жизни. Вещественная основа жизни.
- •21. Земля в период возникновения жизни.
- •22. Начало жизни на земле
- •23. Свойства живой системы.
- •24. Структура нуклеиновых кислот.
- •25. Структура и функции белков.
- •26. Строение и разновидности клеток.
- •27. Модели динамики популяций.
- •28.Эволюция. Теории эволюции.
- •Случайна ли эволюция?
- •29. Геобиологические циклы. Составляющие биосферы.
- •30. Адаптация популяций в биоценозах.
- •31. Ресурсы и численность населения Земли.
- •32. Основные понятия моделирования и математического моделирования.
- •33. Модель Франка сердечно-сосудистой системы.
- •34. Математическое моделирование фармакокинетических процессов. Основные понятия.
- •35. Фармакокинетические модели при различных способах введения лекарственных веществ.
- •1 Способ. Однократное введение лв (инъекция)
- •2 Способ. Непрерывное введение препарата с постоянной скоростью (инфузия).
- •3 Способ. Сочетание непрерывного введения лв(2 способ) с введением нагрузочной дозы (1 способ).
- •36. Траектория всплытия подводной лодки.
- •37. Колебания колец Сатурна.
- •38. Движение шарика, присоединенного к пружине.
- •39. Иерархия моделей. Различные варианты действия заданной внешней силы.
- •40. Движение точки крепления. Две пружины.
- •41. Учет сил трения.
- •42. Два типа нелинейных моделей системы «шарик-пружина».
- •43. Общая схема принципа Гамильтона.
- •44. Получение модели «шарик-пружина» с помощью принципа Гамильтона.
- •45. Колебание маятника в поле сил тяжести.
- •46. Использование принципа Гамильтона для построения моделей механических систем (добавление постоянной внешней силы в систему «шарик-пружина»).
- •47. Жидкость в u-образном сосуде.
- •48. Электрический колебательный контур.
- •49. Малые колебания при взаимодействии двух популяций.
- •50. Динамика скопления амеб.
47. Жидкость в u-образном сосуде.
В огромном числе случаев при попытке построить модель какого-либо объекта либо невозможно прямо указать фундаментальные законы или вариационные принципы, которым он подчиняется, либо, с точки зрения наших сегодняшних знаний, вообще нет уверенности в существовании подобных законов, допускающих математическую формулировку. Одним из плодотворных подходов к такого рода объектам является использование аналогий с уже изученными явлениями.
Жидкость занимает часть
сосуда U-образной формы, представляющего собой изогнутую трубку
радиуса rо. Масса жидкости М0, ее плотность рo0. Стенки
сосуда идеально гладкие, поверхностным натяжением пренебрегается,
атмосферное давление Ро и ускорение свободного падения g постоянны.
В состоянии равновесия жидкость, очевидно, покоится, ее высота в обоих коленах сосуда одинакова. Если ее вывести из равновесия, то
начнется движение, характер которого установим с помощью ЗСЭ.
Потенциальную энергию системы вычислим через работу, которую необходимо совершить, чтобы переместить ее из состояния равновесия в положение, изображенное на рисунке.
где Р — вес той части жидкости в левом колене, уровень которой
превышает величину h2. Работа сил атмосферного давления равна нулю,
так как для разных колен соответствующие перемещения направлены
в разные стороны.
Неизвестные величины h1(t) и h2(t) связаны соотношением h1(t) + h2(t) = const > 0, выражающим постоянство полной длины столба жидкости в сосуде с постоянным сечением. Подставляя последнее равенство в выражение для Еп получаем после интегрирования
При вычислении кинетической энергии учтем постоянство сечения
трубки и несжимаемость жидкости. Это означает, что столб жидкости
движется как целое, и ее скорость v(t) одинакова во всех сечениях.
Примем за v(t) величину dh2(t)/dt и тогда
а
из ЗСЭ
следует
Так как dE/dt = 0, то, продифференцировав это выражение, получаем
что, с учетом такого же соотношения для величины h1(t), дает
уравнение
где h = (h2 — h1)/2 — отклонение уровня жидкости от положения
равновесия.
Т.е. в данной системе будут происходить незатухающие гармонические колебания.
48. Электрический колебательный контур.
В огромном числе случаев при попытке построить модель какого-либо объекта либо невозможно прямо указать фундаментальные законы или вариационные принципы, которым он подчиняется, либо, с точки зрения наших сегодняшних знаний, вообще нет уверенности в существовании подобных законов, допускающих математическую формулировку. Одним из плодотворных подходов к такого рода объектам является использование аналогий с уже изученными явлениями.
Это
устройство представляет собой конденсатор,
соединенный проводами с катушкой
индуктивности. В момент t = 0 цепь
замыкается, и заряд с обкладок
конденсатора начинает распространяться по цепи.
Сопротивление проводов будем считать равным нулю, емкость конденсатора равна С, индуктивность катушки L. Для изменяющейся со временем величины q(t), где q(t) — заряд на обкладках
конденсатора, необходимо получить соответствующее уравнение.
Ток i(t) и напряжение u(t) также являются функциями времени.
По физическому смыслу величины С в любой момент времени имеем равенство u(t) = q(t)С (емкость равна величине заряда, который необходимо поместить на обкладки конденсатора для увеличения разности потенциалов между ними на единицу).
Так как электрическое сопротивление в цепи отсутствует, то падения напряжения на проводах нет, и разность потенциалов u(t), существующая на конденсаторе, подается непосредственно на катушку. При переменном токе в катушке возникает электродвижущая сила самоиндукции, равная
=
-Ldi/dt.
L-
Коэффициент пропорциональности между
изменением силы тока и ЭДС
Закон Ома для цепи в отсутствие сопротивления выглядит следующим
образом:
u(t)
= -
(t),
или q(t)/C
= -
(t)
= Ldi/dt.
Так как по определению i = —dq/dt (i- скорость изменения заряда
Э проходящего через сечение проводника), то из последнего соотношения
получаем
уравнение
Т.е. в системе «емкость-индуктивность» колебания происходят также, как и в системе «шарик-пружина».