
- •Содержание
- •Глава 1. Основы передачи данных
- •1.1. Основные типы модуляции.
- •1.2. Методы передачи данных
- •1.3. Режимы и качество передачи данных
- •Вопросы для самоконтроля по главе 1
- •Глава 2. Базовые термины и определения компьютерных сетей.
- •Вопросы для самоконтроля по главе 2
- •Глава 3. Модель взаимодействия открытых систем
- •Уровень представления данных;
- •Прикладной уровень.
- •3.1. Прикладной уровень
- •3.2. Уровень представления данных
- •3.3. Сеансовый уровень взаимодействия
- •3.4 Транспортный уровень взаимодействия
- •3.5 Сетевой уровень взаимодействия
- •3.6. Канальный уровень взаимодействия
- •3.7. Физический уровень взаимодействия
- •3.8. Адресация в информационных сетях
- •Вопросы для самоконтроля по главе 3
- •Глава 4. Каналы и линии связи
- •4.1. Характеристики сетей
- •4.2. Первичные и вторичные сети
- •4.3. Способы коммутации в сетях
- •4.4. Методы доступа к среде передачи данных в сетях
- •4.5. Мультиплексирование
- •4.6. Физическая среда передачи информации
- •4.7. Проводные физические среды
- •1. Коаксиальный кабель имеет среднюю цену, хорошо помехозащитен и применяется для связи на большие расстояния. Конструкция коаксиального кабеля приведена на рис. 4.3.
- •2. Кабель «витая пара» (Twisted Pair - tp) состоит из пары скрученных медных проводов и может быть двух видов:
- •4.8. Беспроводные физические среды
- •Вопросы для самоконтроля по главе 4
- •5. Локальные сети
- •5.1 Классификация локальных сетей
- •Сети с двухточечными соединениями;
- •Сети с многоточечными соединениями, когда к одному кабельному сегменту подключается более двух узлов.
- •5.2. Протоколы локальных сетей
- •5.3 Определения канального уровня в стандартах ieee-802
- •5.4. Стандарты технологии Ethernet
- •5.5 Стандарт сетей с маркерной шиной
- •5.6 Стандарт сетей с маркерным кольцом
- •5.7 Стандарт технологии 100vg-AnyLan
- •5.8 Стандарт fddi
- •5.9 Стандарт Fibre Channel
- •Вопросы для самоконтроля по главе 5
- •Список литературы
4.5. Мультиплексирование
В глобальных сетях используются следующие методы доступа с общей разделяемой среде:
-
мультиплексирование с временным разделением (Time Division Multiplexing - TDM);
-
мультиплексирование с частотным разделением (Frequency Division Multiplexing - FDM).
1. В первом случае каждому узлу для передачи данных выделяется определенный временной интервал. Когда наступает его временной интервал и узел имеет кадр для передачи, он его отправляет. Мультиплексирование с разделением времени подходит только для работы с данными в цифровой форме. Примером TDM является стандарт Т1 мультиплексирования по времени, распространенный в США и Японии (рис. 4.1.).
Рис. 4.1. Стандарт мультиплексирования по времени Т1
В канале Т1 мультиплексируется 24 голосовых канала в течение каждых 125 миллисекунд. При этом каждый канал оцифровывается последовательно один за другим и передает 8 бит информации: 7 бит - данные, 1 бит - сигнальный. Весь 24-канальный кадр Т1 начинается со специального сигнального бита и передает всего 24*8+1=193 бита. Тогда каждые 125 миллисекунд передается по 193 бита, что дает общую скорость передачи – 1 544 Мb/s. В Европе и Великобритании используется стандарт Е1, по которому мультиплексируется 32 восьмиразрядных канала каждые 125 миллисекунд, что дает скорость 2 048 Мb/s. Кроме того, для передачи данных используется все 8 бит информации
Технология TDM позволяет мультиплексировать каналы по принципу вложенности. Например, в стандарте Т1 - 4 первичных канала могут быть объединены в один, затем 6 объединенных вторичных каналов в один и т.д. (Рис. 4.2.).
Рис. 4.2. Множественное мультиплексирование
2. В технологии с частотным мультиплексированием каждому узлу для передачи пакетов данных выделяется свой частотный диапазон, в котором пересылаемые данные модулируются на соответствующих несущих частотах. Частотное разделение хорошо работает в условиях, когда число пользователей постоянно, и каждый максимально полно загружает выделенный канал. Однако, если число пользователей велико, или трафик нерегулярный, то метод FDM имеет свои недостатки. Например, если диапазон разделен на N частотных диапазонов, но не всем из N узлов требуется передача, то часть пропускной способности будет потеряна. С другой стороны, если число пользователей больше числа допустимых диапазонов N, то часть из них получит отказ из-за недостатка пропускной способности. Чисто частотное мультиплексирование в основном применяется для передачи данных в аналоговой форме.
Общим недостатком двух методов является то, что в обоих случаях, временные интервалы/частотные диапазоны используются узлами по мере необходимости и могут определенное время простаивать.
3. Модификацией частотного мультиплексирования для работы с цифровыми данными в оптических каналах передачи информации является мультиплексирование с разделением длины волны. Здесь свет, проходя через призму, смешивается в единый пучок, который на другом конце канала передачи данных разделяется с помощью другой призмы. Общая пропускная способность оптоволоконного канала может достигать до 25 000 ГГц и ограничена скоростью преобразования светового сигнала в электрический.