- •§1. Постановка задачи.....................................................................46
- •§1. Основные понятия..................................................................61.
- •§1. Основные понятия.................................................................81
- •§1 Основные понятия.
- •§ 2 Классификация моделей
- •§ 3 Классификация решаемых экономических задач.
- •Классификация решаемых экономических задач.
- •Глава 2. Линейное программирование
- •§ 1 Общая постановка задачи
- •§ 2 Двойственность в задачах линейного программирования
- •Правила построения двойственной задачи по имеемой прямой задаче:
- •§ 3 Теоремы двойственности.
- •§4 Решение задач линейного программирования геометрическим методом
- •Алгоритм геометрического метода решения задач лп.
- •Рассмотрим задачу.
- •§ 5 Симплексный метод решения задач лп
- •Глава 3. Транспортная задача
- •§ 1 Постановка задачи.
- •§ 2 Алгоритм решения транспортных задач.
- •Метод наименьшего элемента.
- •Метод потенциалов.
- •§ 3 Примеры решения транспортных задач.
- •1.Проверяем задачу на сбалансированность.
- •Составляем математическую модель прямой и двойственной задач.
- •Решаем задачу по методу максимального элемента.
- •Глава 4 . Целочисленное программирование
- •§ 1 Постановка задачи целочисленного программирования.
- •§ 2 Графический метод решения задач целочисленного программирования.
- •Алгоритм графического решения задачи целочисленного программирования.
- •§ 3 Пример решения задачи целочисленного программирования.
- •Контрольные вопросы.
- •Глава 5 . Динамическое программирование
- •§1. Постановка задачи.
- •§2. Принцип оптимальности Беллмана.
- •§3. Задача распределения средств на 1 год
- •§4. Задача распределения средств на два года
- •Глава 6 . Управление производством.
- •§ 1 Управление производством.
- •§ 2 Управление запасами .Складская задача.
- •Глава 7. Теория игр.
- •§1 Основные понятия.
- •§2 Антагонистические игры.
- •Геометрический способ решения антагонистических игр
- •§3 Игры с « природой».
- •Пример №1
- •2. Критерий Гурвица.
- •3. Критерий Сэвиджа (критерий минимаксного риска).
- •4. Критерий Лапласа. N
- •Пример №2
- •Глава 8. Системы массового обслуживания
- •§I. Формулировка задачи и характеристики смо
- •§2 Смо с отказами
- •2.1 Основные понятия
- •2.2 Формулы для расчета установившегося режима
- •§3 Смо с неограниченным ожиданием
- •3.1 Основные понятия
- •3.2 Формулы для расчета установившегося режима
- •§4 Смо с ожиданием и с ограниченной длиной очереди
- •4.1 Основные понятия
- •4.2Формулы для установившегося режима
- •§5 Примеры решения задач.
- •Глава 9 нелинейное програмирование.
- •§1 Основные понятия.
- •§2 Математическая модель задачи.
- •§3 Безусловный экстремум
- •§4 Условный экстремум
- •Глава 10 . Сетевое планирование.
- •§1 Основные понятия метода сетевого планирования
- •Работа, события, путь.
- •Любая работа соединяет только 2 события.
- •§2 Расчет сетевых графиков
- •Содержание практических занятий
- •Рекомендуемая литература:
§ 2 Классификация моделей
В экономико-математическом моделировании модели разделяются на классы по ряду признаков, относящихся к особенностям моделируемых объектов, целям моделирования и используемого инструментария.
Макроэкономические модели описывают экономику как единое целое со связями между агрегированными материальными и финансовыми показателями (ВВП, потребление, инвестиции, занятость, денежная масса, государственный долг, инфляция и др.).
Микроэкономические модели описывают взаимодействия структурных и функциональных составляющих экономики либо их поведение в отдельности в рыночной среде.
Теоретические модели являются аппаратом изучения общих свойств экономики и ее составляющих на основе дедукции выводов из формальных предпосылок.
Прикладные модели представляют собой аппарат оценок параметров конкретных экономических объектов, выработки рекомендаций для принятий экономических решений и разработки стратегии поведения фирм на рынке.
Равновесные модели описывают такие состояния экономики, когда результирующая всей воздействий на нее равна нулю. Как правило, равновесные модели являются описательными.
Оптимизационные модели используются в теории рыночной экономики на микроуровне (оптимизация деятельности потребителя, производителя или фирмы). На макроуровне результат выбора экономическими субъектами рационального поведения может приводить к состоянию относительного равновесия.
Статические модели описываю состояние экономических объектов в определенный момент или усреднено за некоторый период времени. При этом все параметры статических моделей полагаются фиксированными величинами, не зависящими от времени.
Динамические модели включают в себя зависимость и взаимосвязи переменным модели во времени. Они используют обычно аппарат дифференциальных и разностных уравнений и вариационного исчисления, где независимой переменной является время.
Детерминированные модели предполагают в своей основе только жесткие функциональные связи между переменными модели.
Стохастические модели допускают наличие случайных связей между переменными модели. Эти модели используют аппарат теории вероятностей и математической статистики.
Модели с элементами неопределенности используются для моделирования ситуаций, когда для определяющих факторов невозможно собрать статистические данные, и их значения неопределенны. В этих моделях используется аппарат теории игр и имитационного моделирования.
Экспортные модели – разрабатываются и имеют применение в ряде исследований экономических процессов, когда в условиях отсутствия количественных характеристик за основу принимаются мнения экспертов с оценками разных аспектов по определенной шкале. Эти оценки могут быть использованы в виде векторов некоторой размерности, которые, в свою очередь, можно сравнивать по мере их близости.
Предназначение модели состоит в том, что она является инструментом обработки информации.
§ 3 Классификация решаемых экономических задач.
По уровню информации о ситуации:
-
Детерминированный уровень – наиболее простой уровень информации о ситуации - когда условия, в которых принимаются решения, известны полностью.
-
Стохастический уровень – уровень, при котором известно множество возможных вариантов условий и их вероятностное распределение.
-
Неопределенный уровень- уровень, когда известно множество возможных вариантов, но без какой-либо информации об их вероятностях.
По виду информации о ситуации:
-
Статический вид – информация о ситуации не меняется во времени и известна заранее.
-
Динамический вид – информация о ситуации зависит от времени, прошедшего от начала операции.
По виду критерия оптимальности:
1.Однокритериальные задачи
2.Монокритериальные задачи
По типу критерия оптимальности:
-
Линейные задачи
-
Нелинейные задачи
По типу области ограничения:
-
Выпуклая область
-
Целочисленная область
-
Булева область
Контрольные вопросы.